Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystal structure of archael chromatin clarified in new study

08.03.2012
Researchers at the RIKEN SPring-8 Center in Japan have clarified for the first time how chromatin in archaea, one of the three evolutionary branches of organisms in nature, binds to DNA. The results offer valuable clues into the evolution of chromatin structure and promise insights into how abnormalities contribute to cancers and gene disorders.
Three distinct evolutionary branches of organisms make up all natural forms of life on the planet: bacteria, archaea and eukaryotes. Among these three, the domain known as archaea includes a variety of organisms that live in harsh environments similar to those of an early Earth, thus offering arguably the greatest glimpse of what life may have looked like 4 billion years ago.

One area of great interest is the process by which DNA bind to proteins to compact and regulate the availability of genetic material, a process which is essential in all cellular organisms. In eukaryotes, proteins known as "histones" package and order DNA into a compact protein-DNA structure called chromatin. Archaea, in contrast, have no such universal chromatin proteins, instead using two or more DNA-binding proteins to package DNA. Alba is the most widespread and abundant such archaeal chromatin protein, present in the genome sequence of every archaeal species that lives in high-temperature environments (thermophilic or hyperthermophilic).

While researchers know about the existence of Alba in archaea, the question of how these proteins bind to and compact DNA has remained a mystery. To answer this question, the researchers analyzed the crystal structure of the Alba2-DNA complex from the archaea A. pernix K1 at atomic-level resolution using synchrotron radiation from the RIKEN SPring-8 facility in Harima, Japan. Their results indicate that unlike the chromatin structure of eukaryotes, Alba2 in archaea forms a hollow pipe with the duplex DNA running through it, with the hairpin structure of Alba2 stabilizing the pipe.

Published in the February 10th issue of the Journal of Biological Chemistry, this newly-discovered mechanism for compacting DNA marks a major step forward in our understanding of the evolution of chromatin structure. The results promise to clarify how abnormalities in chromatin structure can contribute to cancers and gene disorders, while also providing inspiration for the development of new types of biodevices.

Contact:
Thirumananseri Kumarevel
Biometal Science Laboratory
RIKEN SPring-8 Center
Tel: +81-(0)791-58-0802 / Fax: +81-(0)791-58-2917
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Mail: koho@riken.jp

Reference:

Tomoyuki Tanaka, Sivaraman Padavattan and Thirumananseri Kumarevel "Crystal structure of archael chromatin protein Alba2-dsDNA complex from Aeropyrum pernix K1." Journal of Biological Chemistry, 2012, DOI: 10.1074/jbc.M112.343210

About RIKEN

RIKEN is Japan's flagship research institute devoted to basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.

About the RIKEN SPring-8 Center

The RIKEN SPring-8 Center, located in Harima, Japan, is home to SPring-8 (the Super Photon ring-8 GeV), the most powerful synchrotron radiation facility in the world. The RIKEN SPring-8 Center was established to support frontier research initiatives applying SPring-8's unique radiation to a wide variety of fields, notably structural biology and materials science. The center also focuses on the development of technology for producing high-quality synchrotron radiation sources and on development of the new SACLA X-ray Free Electron Laser project.

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: Alba2 Biological Chemistry CHEMISTRY DNA RIKEN SPring-8 synchrotron radiation

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>