Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystal structure of archael chromatin clarified in new study

08.03.2012
Researchers at the RIKEN SPring-8 Center in Japan have clarified for the first time how chromatin in archaea, one of the three evolutionary branches of organisms in nature, binds to DNA. The results offer valuable clues into the evolution of chromatin structure and promise insights into how abnormalities contribute to cancers and gene disorders.
Three distinct evolutionary branches of organisms make up all natural forms of life on the planet: bacteria, archaea and eukaryotes. Among these three, the domain known as archaea includes a variety of organisms that live in harsh environments similar to those of an early Earth, thus offering arguably the greatest glimpse of what life may have looked like 4 billion years ago.

One area of great interest is the process by which DNA bind to proteins to compact and regulate the availability of genetic material, a process which is essential in all cellular organisms. In eukaryotes, proteins known as "histones" package and order DNA into a compact protein-DNA structure called chromatin. Archaea, in contrast, have no such universal chromatin proteins, instead using two or more DNA-binding proteins to package DNA. Alba is the most widespread and abundant such archaeal chromatin protein, present in the genome sequence of every archaeal species that lives in high-temperature environments (thermophilic or hyperthermophilic).

While researchers know about the existence of Alba in archaea, the question of how these proteins bind to and compact DNA has remained a mystery. To answer this question, the researchers analyzed the crystal structure of the Alba2-DNA complex from the archaea A. pernix K1 at atomic-level resolution using synchrotron radiation from the RIKEN SPring-8 facility in Harima, Japan. Their results indicate that unlike the chromatin structure of eukaryotes, Alba2 in archaea forms a hollow pipe with the duplex DNA running through it, with the hairpin structure of Alba2 stabilizing the pipe.

Published in the February 10th issue of the Journal of Biological Chemistry, this newly-discovered mechanism for compacting DNA marks a major step forward in our understanding of the evolution of chromatin structure. The results promise to clarify how abnormalities in chromatin structure can contribute to cancers and gene disorders, while also providing inspiration for the development of new types of biodevices.

Contact:
Thirumananseri Kumarevel
Biometal Science Laboratory
RIKEN SPring-8 Center
Tel: +81-(0)791-58-0802 / Fax: +81-(0)791-58-2917
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Mail: koho@riken.jp

Reference:

Tomoyuki Tanaka, Sivaraman Padavattan and Thirumananseri Kumarevel "Crystal structure of archael chromatin protein Alba2-dsDNA complex from Aeropyrum pernix K1." Journal of Biological Chemistry, 2012, DOI: 10.1074/jbc.M112.343210

About RIKEN

RIKEN is Japan's flagship research institute devoted to basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.

About the RIKEN SPring-8 Center

The RIKEN SPring-8 Center, located in Harima, Japan, is home to SPring-8 (the Super Photon ring-8 GeV), the most powerful synchrotron radiation facility in the world. The RIKEN SPring-8 Center was established to support frontier research initiatives applying SPring-8's unique radiation to a wide variety of fields, notably structural biology and materials science. The center also focuses on the development of technology for producing high-quality synchrotron radiation sources and on development of the new SACLA X-ray Free Electron Laser project.

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: Alba2 Biological Chemistry CHEMISTRY DNA RIKEN SPring-8 synchrotron radiation

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>