Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cryopreservation of induced pluripotent stem cells improved the most by one product

26.09.2012
In a study to determine the best cryopreservation (freezing) solution to maintain induced pluripotent stem (iPS) cells, a team of researchers from Japan compared 12 kinds of commercially prepared and readily available cryopreservation solutions and found that "Cell Banker 3" out-performed the other 11 solutions by allowing iPS cells to be preserved for a year at �� degrees C in an undifferentiated state.

The study is published in a recent special issue of Cell Medicine [3(1)], now freely available on-line at: http://www.ingentaconnect.com/content/cog/cm.

"iPS cells are a promising alternative to embryonic stem cells and can be used in place of bone marrow cells, stromal cells and adipose tissue-derived stem cells," said study co-author Hirofumi Noguchi, MD, PhD, Department of Gastroenterological Surgery, Transplant and Surgical Oncology at the Okayama University Graduate School of Medicine.

"However, the viability of human iPS cells, like embryonic stem cells, decreases significantly during cryopreservation. A wide variety of cryopreservation solutions have been used, however many are toxic or ineffective for use in extended cryopreservation."

The researchers concluded that Cell Banker 3 showed the highest cell viability and proliferation of all the solutions examined and can be widely used as it does not require any special skills for use.

This research was among those studies presented at the 37th Annual Meeting of the Japan Society for Organ Preservation and Medical Biology (JSOPMB). Sixteen studies were published in this special issue of CELL MEDICINE. The theme of the issue is "Organ/Cell Transplantation and Regenerative Medicine."

Citation: Miyamoto, Y.; Noguchi, H.; Yukawa, H.; Oishi, K.; Matsushita, K.; Iwata, H.; Hayashi, S. Cryopreservation of Induced Pluripotent Stem Cells. Cell Med. 3(1):89-95; 2012.

Contact: Dr. Hirofumi Noguchi, Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Okayama 700-8558 Japan
Tel + 81-86-235-7257; Fax + 81-86-221-8775
Noguchih2006@yahoo.co.jp / noguch-h@cc.okayama-u.ac.jp
The editorial offices for CELL MEDICINE are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida. Contact, David Eve, PhD. at cellmedicinect@gmail.com

News Release by Florida Science Communications

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/cm

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>