Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crustacean shells as a raw material for chemicals

20.01.2012
In the ChiBio project, which is funded by the EU, the Straubing Project Group BioCat of the Fraunhofer IGB together with international partners is aiming to develop new methods of producing specialty and fine chemicals from chitin-rich fishing-industry waste.
Shellfish, crabs and shrimps are highly valued culinary delicacies. Every year more than 750,000 tonnes of shells of these crustaceans land on the waste in the EU alone. Theoretically the shells could also be valorized. They contain chitin, a biopolymer also occurring in insects and fungi, that consists of nitrogenous sugar molecules strung together in a polymer chain. In Asia, for example, the polymer chitosan is already produced from shrimp shells. This is used to make filters or foils, and also wound dressings. However, the shells of the European crustaceans contain more lime, so processing them to obtain chitosan is not economical.

In the EU-funded ChiBio Project researchers led by the Straubing Project Group BioCat of the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB want to develop new methods of utilizing the shells that result in large quantities of waste, in order to use them here in Europe as a raw material for chemicals and new materials. The consortium comprising research and industrial partners from Norway, Austria, the Czech Republic, Ireland as well as Tunisia and Indonesia is focusing on an integrated approach. “In the manner of a biorefinery we want to develop or optimize various material and energetic uses for the waste material “crustacean shells”– and thus to utilize the residual material as efficiently and completely as possible,” explains Professor Volker Sieber, Coordinator of ChiBio and head of the BioCat Project Group in Straubing.

First of all the remaining crab meat has to be removed from the shells. “We want to separate these biomass residues, which consist of proteins and fats, in such a way that we are able to ferment them directly and use them for energetic purposes,” says Dr. Lars Wiemann, ChiBio project manager in Straubing. The purified chitin can then be split into its monomeric components, the nitrogenous sugar glucosamine, using enzymes or microorganisms. At the Fraunhofer IGB chitinases have already been isolated from bacteria that catalyze this splitting process. “It will be a great challenge to convert glucosamine into such basic components – or platform chemicals, from which chemists can produce various new, bio-based polymers,” says Dr. Wiemann. So that individual monomers can be linked to form a polymer, these require at least two functional groups that can be combined catalytically. “Here we aim to combine chemical steps with biotechnological processes,” adds Professor Sieber. The intention is to ferment all the bio-based by-products generated in the process chain together with the initially separated proteins and fats to produce biogas as a regenerative energy carrier.

The EU Research Proposal “ChiBio – Development of an Integrated Biorefinery for Processing Chitin-rich Biowaste to Specialty and Fine Chemicals” was awarded 14 out of 15 possible points – the best result in the topic “Novel Biotechnological Approaches for Transforming Industrial and/or Municipal Biowaste into Bioproducts – SICA”. The funds of 3 million euros are being made available from November 2011 for the three-year duration of the project. Regional partners are Professor Thomas Brück’s “Industrial Biocatalysis” Working Group at the TU München in Garching and Süd-Chemie AG in Moosburg from Bavaria, both Germany, as well as the Czech company Apronex and the Upper Austrian Energy Institute at the Johannes Kepler Universität Linz GmbH. Further participants are Letterkenny Institute of Technology (Letterkenny, Ireland), the Agricultural University of Norway (Oslo, Norway), Institut National des Sciences et Technologies de la Mer (Karthago, Tunisia), Earagail Eisc Teoranta (Carrick, Ireland), Evonik Industries AG (Essen, Germany) and Biotech Surindo PT (Cirebon, Indonesia).

The Project Group BioCat is part of the Straubing Center of Science at the Center of Excellence for Renewable Resources and attached to the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart, which is directed by Professor Thomas Hirth. The Project Group is led by Professor Volker Sieber, who holds the Chair for the Chemistry of Biogenic Resources at the TU München.

The research project ChiBio receives funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no 289284.

Contact:
Fraunhofer IGB
Project Group BioCat
Schulgasse 16
94315 Straubing,Germany
Dr. Lars Wiemann
Phone +49 9421 187-353
lars.wiemann@igb.fraunhofer.de

Dr. Claudia Vorbeck | Fraunhofer-Institut
Further information:
http://www.igb.fraunhofer.de/en/press-media/press-releases/chibio.html

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>