Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cross-Country Runabouts - Immune Cells on the Move

16.11.2009
In order to effectively fight pathogens, even at remote areas of the human body, immune cells have to move quickly and in a flexible manner.

Scientists from the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich, Germany, have now deciphered the mechanism that illustrates how these mobile cells move on diverse surfaces.

"Similar to a car, these cells have an engine, a clutch and wheels which provide the necessary friction," explains Michael Sixt, a research group leader at the MPI of Biochemistry. The results, which were developed in cooperation with colleagues from the MPI for Metals Research in Stuttgart, Germany, have now been published in Nature Cell Biology.

White blood cells, also called leukocytes or immune cells, fight infections in the human body in many different ways. As defence cells, they are able to invade infected tissues, detect and eliminate pathogens. Also foreign structures and wreckage of the body's own cells are disposed with their help. To cope with that task, they move a hundred fold faster than other cell types. Thereby, immune cells follow certain attractants which are released by the body's own cells or the pathogens.

Energy Transfer on a Molecular Level
Cells have to generate the necessary energy from the inside in order to move forward. This task is carried out by the cytoskeleton, a network of proteins which stretches through the cell's complete interior. It can expand and form finger-like extensions and retract them likewise.

However, this deformation is not enough to make a cell move. "Similar to a car, the energy has to be transferred on the street," illuminates Dr. Sixt. "We need a clutch and wheels." For this purpose, every cell carries special cell anchors on their surface: the integrins. These proteins span the envelope of the cells and are directly connected to the cell's cytoskeleton. On the outside, these anchors can stick to other cells and tissues and thus, form a connection to the outside world. "The connection between the cytoskeleton and the integrin matches the clutch," says Dr. Sixt, "the connection between the integrin and the outside world corresponds to the grasp of the wheels."

Immune Cells are Cross-Country
In doing so, immune cells are not rigid and inflexible. According to the scientists, they are able to adjust to every possible underground. "Our analysis has shown that leukocytes always move with the same speed - no matter whether they migrate over a slippery or rough substrate," Dr. Sixt points out. That is possible due to the tight interaction between motor, clutch and wheels. When the cell's anchors do not grip properly, the cell increases the speed of its engine - the cytoskeleton deforms faster. Thus, the speed of the cell stays the same. Leukocytes are also able to overcome locally occurring unevenness. Should the immune cell move with one half over slippery and with the other on rough ground, the cytoskeleton adjusts locally - similar to a differential gear. "Thus, the direction of movement is defined only by the attractant," explains the physician. "And this attractant is just as little keeping with tissue frontiers and unevenness like the leukocyte."

Original Publication:

J. Renkawitz, K. Schumann, M. Weber, T. Lämmermann, H. Pflicke, M. Piel, J. Polleux, J. P. Spatz, M. Sixt: Adaptive force transmission in amoeboid cell migration. Nature Cell Biology, November 15, 2009.

Contact:

Dr. Michael Sixt
Leukocyte Migration
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
sixt@biochem.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
An Klopferspitz 18
82152 Martinsried
Phone ++49/89-8578-2824
E-mail: konschak@biochem.mpg.de

Anja Konschak | idw
Further information:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/sixt/

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>