Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cross-Country Runabouts - Immune Cells on the Move

16.11.2009
In order to effectively fight pathogens, even at remote areas of the human body, immune cells have to move quickly and in a flexible manner.

Scientists from the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich, Germany, have now deciphered the mechanism that illustrates how these mobile cells move on diverse surfaces.

"Similar to a car, these cells have an engine, a clutch and wheels which provide the necessary friction," explains Michael Sixt, a research group leader at the MPI of Biochemistry. The results, which were developed in cooperation with colleagues from the MPI for Metals Research in Stuttgart, Germany, have now been published in Nature Cell Biology.

White blood cells, also called leukocytes or immune cells, fight infections in the human body in many different ways. As defence cells, they are able to invade infected tissues, detect and eliminate pathogens. Also foreign structures and wreckage of the body's own cells are disposed with their help. To cope with that task, they move a hundred fold faster than other cell types. Thereby, immune cells follow certain attractants which are released by the body's own cells or the pathogens.

Energy Transfer on a Molecular Level
Cells have to generate the necessary energy from the inside in order to move forward. This task is carried out by the cytoskeleton, a network of proteins which stretches through the cell's complete interior. It can expand and form finger-like extensions and retract them likewise.

However, this deformation is not enough to make a cell move. "Similar to a car, the energy has to be transferred on the street," illuminates Dr. Sixt. "We need a clutch and wheels." For this purpose, every cell carries special cell anchors on their surface: the integrins. These proteins span the envelope of the cells and are directly connected to the cell's cytoskeleton. On the outside, these anchors can stick to other cells and tissues and thus, form a connection to the outside world. "The connection between the cytoskeleton and the integrin matches the clutch," says Dr. Sixt, "the connection between the integrin and the outside world corresponds to the grasp of the wheels."

Immune Cells are Cross-Country
In doing so, immune cells are not rigid and inflexible. According to the scientists, they are able to adjust to every possible underground. "Our analysis has shown that leukocytes always move with the same speed - no matter whether they migrate over a slippery or rough substrate," Dr. Sixt points out. That is possible due to the tight interaction between motor, clutch and wheels. When the cell's anchors do not grip properly, the cell increases the speed of its engine - the cytoskeleton deforms faster. Thus, the speed of the cell stays the same. Leukocytes are also able to overcome locally occurring unevenness. Should the immune cell move with one half over slippery and with the other on rough ground, the cytoskeleton adjusts locally - similar to a differential gear. "Thus, the direction of movement is defined only by the attractant," explains the physician. "And this attractant is just as little keeping with tissue frontiers and unevenness like the leukocyte."

Original Publication:

J. Renkawitz, K. Schumann, M. Weber, T. Lämmermann, H. Pflicke, M. Piel, J. Polleux, J. P. Spatz, M. Sixt: Adaptive force transmission in amoeboid cell migration. Nature Cell Biology, November 15, 2009.

Contact:

Dr. Michael Sixt
Leukocyte Migration
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
sixt@biochem.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
An Klopferspitz 18
82152 Martinsried
Phone ++49/89-8578-2824
E-mail: konschak@biochem.mpg.de

Anja Konschak | idw
Further information:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/sixt/

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>