Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cross-Country Runabouts - Immune Cells on the Move

16.11.2009
In order to effectively fight pathogens, even at remote areas of the human body, immune cells have to move quickly and in a flexible manner.

Scientists from the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich, Germany, have now deciphered the mechanism that illustrates how these mobile cells move on diverse surfaces.

"Similar to a car, these cells have an engine, a clutch and wheels which provide the necessary friction," explains Michael Sixt, a research group leader at the MPI of Biochemistry. The results, which were developed in cooperation with colleagues from the MPI for Metals Research in Stuttgart, Germany, have now been published in Nature Cell Biology.

White blood cells, also called leukocytes or immune cells, fight infections in the human body in many different ways. As defence cells, they are able to invade infected tissues, detect and eliminate pathogens. Also foreign structures and wreckage of the body's own cells are disposed with their help. To cope with that task, they move a hundred fold faster than other cell types. Thereby, immune cells follow certain attractants which are released by the body's own cells or the pathogens.

Energy Transfer on a Molecular Level
Cells have to generate the necessary energy from the inside in order to move forward. This task is carried out by the cytoskeleton, a network of proteins which stretches through the cell's complete interior. It can expand and form finger-like extensions and retract them likewise.

However, this deformation is not enough to make a cell move. "Similar to a car, the energy has to be transferred on the street," illuminates Dr. Sixt. "We need a clutch and wheels." For this purpose, every cell carries special cell anchors on their surface: the integrins. These proteins span the envelope of the cells and are directly connected to the cell's cytoskeleton. On the outside, these anchors can stick to other cells and tissues and thus, form a connection to the outside world. "The connection between the cytoskeleton and the integrin matches the clutch," says Dr. Sixt, "the connection between the integrin and the outside world corresponds to the grasp of the wheels."

Immune Cells are Cross-Country
In doing so, immune cells are not rigid and inflexible. According to the scientists, they are able to adjust to every possible underground. "Our analysis has shown that leukocytes always move with the same speed - no matter whether they migrate over a slippery or rough substrate," Dr. Sixt points out. That is possible due to the tight interaction between motor, clutch and wheels. When the cell's anchors do not grip properly, the cell increases the speed of its engine - the cytoskeleton deforms faster. Thus, the speed of the cell stays the same. Leukocytes are also able to overcome locally occurring unevenness. Should the immune cell move with one half over slippery and with the other on rough ground, the cytoskeleton adjusts locally - similar to a differential gear. "Thus, the direction of movement is defined only by the attractant," explains the physician. "And this attractant is just as little keeping with tissue frontiers and unevenness like the leukocyte."

Original Publication:

J. Renkawitz, K. Schumann, M. Weber, T. Lämmermann, H. Pflicke, M. Piel, J. Polleux, J. P. Spatz, M. Sixt: Adaptive force transmission in amoeboid cell migration. Nature Cell Biology, November 15, 2009.

Contact:

Dr. Michael Sixt
Leukocyte Migration
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
sixt@biochem.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
An Klopferspitz 18
82152 Martinsried
Phone ++49/89-8578-2824
E-mail: konschak@biochem.mpg.de

Anja Konschak | idw
Further information:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/sixt/

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>