Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crocodiles Trump T.Rex as Heavyweight Bite-Force Champions

02.04.2012
In PLoS One, Stony Brook researcher says finding adds insight to evolution of the reptile hunters

Paul M. Gignac, Ph.D., Instructor of Research, Department of Anatomical Sciences, Stony Brook University School of Medicine, and colleagues at Florida State University and in California and Australia, found in a study of all 23 living crocodilian species that crocodiles can kill with the strongest bite force measured for any living animal.

The study also revealed that the bite forces of the largest extinct crocodilians exceeded 23,000 pounds, a force two-times greater than the mighty Tyrannosaurus rex. Their data, reported online in PLoS One, contributes to the understanding of performance in animals from the past and provides unprecedented insight into how evolution has shaped that performance.

In “Insights into the Ecology and Evolutionary Success of Crocodilians Revealed through Bite-Force and Tooth-Pressure Experimentation,” the researchers detail their examination of the bite force and tooth pressure of every species of alligator, crocodile, caiman, and gharial. Led by Project Director Gregory Erickson, Ph.D., Professor of Biological Science at Florida State University, the study took more than a decade to complete and required a diverse team of croc handlers and scientists.

“Crocodiles and alligators are the largest, most successful reptile hunters alive today, and our research illustrates one of the key ways they have maintained that crown,” says Dr. Gignac.

The team roped 83 adult alligators and crocodiles and placed a force meter between their back teeth and recorded the bite force. They found that gators and crocs have pound-for-pound comparable maximal bite forces, despite different snouts and teeth. Contrary to previous evolutionary thinking, they determined that bite force was correlated with body size but showed surprisingly little correlation with tooth form, diet, jaw shape, or jaw strength.

Dr. Gignac emphasizes that the study results suggest that once crocodilians evolved their remarkable capacity for force-generation, further adaptive modifications involved changes in body size and the dentition to modify forces and pressures for different diets.

The findings are unique, to the point that the team has been contacted by editors of the “Guinness Book of World Records” inquiring about the data.

Among living crocodilians, the bite-force champion is a 17-foot saltwater croc, with a force measured at 3,700 pounds.
“This kind of bite is like being pinned beneath the entire roster of the New York Knicks,” says Dr. Gignac, illustrating the tremendous force displayed by the living creatures. “But with bone-crushing teeth.”

The research was funded by the National Geographic Society and the Florida State University College of Arts and Sciences.

The Department of Anatomical Sciences is one of 25 departments within the Stony Brook University School of Medicine. The department includes graduate and doctoral programs in Anatomical Sciences. The faculty consists of prominent and internationally recognized researchers in the fields of Anthropology, Vertebrate Paleontology and Systematics, and Functional Morphology.

Greg Filiano | Newswise Science News
Further information:
http://www.stonybrook.edu

Further reports about: Anatomical Bite-Force Champions Heavyweight PLoS One Science TV body size crocodiles

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>