Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crocodiles Trump T.Rex as Heavyweight Bite-Force Champions

02.04.2012
In PLoS One, Stony Brook researcher says finding adds insight to evolution of the reptile hunters

Paul M. Gignac, Ph.D., Instructor of Research, Department of Anatomical Sciences, Stony Brook University School of Medicine, and colleagues at Florida State University and in California and Australia, found in a study of all 23 living crocodilian species that crocodiles can kill with the strongest bite force measured for any living animal.

The study also revealed that the bite forces of the largest extinct crocodilians exceeded 23,000 pounds, a force two-times greater than the mighty Tyrannosaurus rex. Their data, reported online in PLoS One, contributes to the understanding of performance in animals from the past and provides unprecedented insight into how evolution has shaped that performance.

In “Insights into the Ecology and Evolutionary Success of Crocodilians Revealed through Bite-Force and Tooth-Pressure Experimentation,” the researchers detail their examination of the bite force and tooth pressure of every species of alligator, crocodile, caiman, and gharial. Led by Project Director Gregory Erickson, Ph.D., Professor of Biological Science at Florida State University, the study took more than a decade to complete and required a diverse team of croc handlers and scientists.

“Crocodiles and alligators are the largest, most successful reptile hunters alive today, and our research illustrates one of the key ways they have maintained that crown,” says Dr. Gignac.

The team roped 83 adult alligators and crocodiles and placed a force meter between their back teeth and recorded the bite force. They found that gators and crocs have pound-for-pound comparable maximal bite forces, despite different snouts and teeth. Contrary to previous evolutionary thinking, they determined that bite force was correlated with body size but showed surprisingly little correlation with tooth form, diet, jaw shape, or jaw strength.

Dr. Gignac emphasizes that the study results suggest that once crocodilians evolved their remarkable capacity for force-generation, further adaptive modifications involved changes in body size and the dentition to modify forces and pressures for different diets.

The findings are unique, to the point that the team has been contacted by editors of the “Guinness Book of World Records” inquiring about the data.

Among living crocodilians, the bite-force champion is a 17-foot saltwater croc, with a force measured at 3,700 pounds.
“This kind of bite is like being pinned beneath the entire roster of the New York Knicks,” says Dr. Gignac, illustrating the tremendous force displayed by the living creatures. “But with bone-crushing teeth.”

The research was funded by the National Geographic Society and the Florida State University College of Arts and Sciences.

The Department of Anatomical Sciences is one of 25 departments within the Stony Brook University School of Medicine. The department includes graduate and doctoral programs in Anatomical Sciences. The faculty consists of prominent and internationally recognized researchers in the fields of Anthropology, Vertebrate Paleontology and Systematics, and Functional Morphology.

Greg Filiano | Newswise Science News
Further information:
http://www.stonybrook.edu

Further reports about: Anatomical Bite-Force Champions Heavyweight PLoS One Science TV body size crocodiles

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>