Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crocodile and hippopotamus served as 'brain food' for early human ancestors

10.06.2010
Your mother was right: Fish really is "brain food." And it seems that even pre-humans living as far back as 2 million years ago somehow knew it.

A team of researchers that included Johns Hopkins University geologist Naomi Levin has found that early hominids living in what is now northern Kenya ate a wider variety of foods than previously thought, including fish and aquatic animals such as turtles and crocodiles.

Rich in protein and nutrients, these foods may have played a key role in the development of a larger, more human-like brain in our early forebears, which some anthropologists believe happened around 2 million years ago, according to the researchers' study.

"Considering that growing a bigger brain requires many nutrients and calories, anthropologists have posited that adding meat to their diet was key to the development of a larger brain," said Levin, an assistant professor in the Morton K. Blaustein Department of Earth and Planetary Sciences at Johns Hopkins' Krieger School of Arts and Sciences. "Before now, we have never had such a wealth of data that actually demonstrates the wide variety of animal resources that early humans accessed." Levin served as the main geologist on the team, which included scientists from the United States, South Africa, Kenya, Australia and the United Kingdom.

... more about:
»Africa »CROCODILE »stone tools

A paper on the study was published recently in Proceedings of the National Academy of Sciences and offers first-ever evidence of such dietary variety among early pre-humans.

In 2004, the team discovered a 1.95 million-year-old site in northern Kenya and spent four years excavating it, yielding thousands of fossilized tools and bones. According to paper's lead author David Braun of the University of Cape Town (South Africa), the site provided the right conditions to preserve those valuable artifacts.

"At sites of this age, we often consider ourselves lucky if we find any bone associated with stone tools. But here, we found everything from small bird bones to hippopotamus leg bones," Braun said.

The preservation of the artifacts was so remarkable, in fact, that it allowed the team to meticulously and accurately reconstruct the environment, identifying numerous fossilized plant remains and extinct species that seem to be a sign that these early humans lived in a wet -- and possibly even a marshy -- environment.

"Results from stable isotopic analysis of the fossil teeth helped refine our picture of the paleoenvironment of the site, telling us that the majority of mammals at the site subsisted on grassy, well-watered resources," Levin said. "Today, the Turkana region in northern Kenya is an extremely dry and harsh environment. So, clearly, the environment of this butchery site was very different 1.95 million years ago -- this spot was much wetter and lush."

Using a variety of techniques, the team was able to conclude that the hominids butchered at least 10 individual animals -- including turtles, fish, crocodiles and antelopes -- on the site for use as meals. Cut marks found on the bones indicate that the hominids use simple, sharp-edged stone tools to butcher their prey.

"It's not clear to us how early humans acquired or processed the butchered meat, but it's likely that it was eaten raw," Levin said.

The team theorizes that the wet and marshy environment gave early pre-humans a way to increase the protein in their diets (and grow larger brains!) while possibly avoiding contact with larger carnivores, such as hyenas and lions.

This research was supported by the National Science Foundation-International Research Fellowship Program, the Rutgers University Center for Human Evolutionary Studies, the University of Cape Town, the Palaeontological Scientific Trust, a University of South Wales Faculty of Medicine research grant, and an Australian Research Council Discovery Grant.

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu
http://eps.jhu.edu/bios/naomi-levin/index.html

Further reports about: Africa CROCODILE stone tools

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>