Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CRISPR Critters: Scientists identify key enzyme in microbial immune system

10.09.2010
Imagine a war in which you are vastly outnumbered by an enemy that is utterly relentless – attacking you is all it does. The intro to another Terminator movie?

No, just another day for microbes such as bacteria and archaea, which face a never-ending onslaught from viruses and invading strands of nucleic acid known as plasmids. To survive this onslaught, microbes deploy a variety of defense mechanisms, including an adaptive-type nucleic acid-based immune system that revolves around a genetic element known as CRISPR, which stands for Clustered Regularly Interspaced Short Palindromic Repeats.

Through the combination of CRISPR and squads of CRISPR-associated – “Cas” – proteins, microbes are able to utilize small customized RNA molecules to silence critical portions of an invader’s genetic message and acquire immunity from similar invasions in the future. To better understand how this microbial immune system works, scientists have needed to know more about how CRISPR’s customized small RNA molecules get produced. Answers have now been provided by a team of researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley.

In a study led by biochemist Jennifer Doudna, the research team used protein crystallography beamlines at Berkeley Lab’s Advanced Light Source to produce an atomic-scale crystal structure model of an endoribonuclease called “Csy4.” Doudna and her colleagues have identified Csy4 as the enzyme in prokaryotes that initiates the production of CRISPR-derived RNAs (crRNAs), the small RNA molecules that target and silence invading viruses and plasmids.

“Our model reveals that Csy4 and related endoribonucleases from the same CRISPR/Cas subfamily utilize an exquisite recognition mechanism to discriminate crRNAs from other cellular RNAs to ensure the selective production of crRNA for acquired immunity in bacteria,” Doudna says. “We also found functional similarities between the RNA recognition mechanisms in Cys4 and Dicer, the enzyme that plays a critical role in eukaryotic RNA interference.”

Doudna is a leading authority on RNA molecular structures who holds joint appointments with Berkeley Lab’s Physical Biosciences Division and UC Berkeley’s Department of Molecular and Cell Biology and Department of Chemistry. She is also an investigator with the Howard Hughes Medical Institute (HHMI). The results of this latest research on CRISPR are reported in the journal Science in a paper titled “Sequence- and structure-specific RNA processing by a CRISPR endonuclease.” Co-authoring the paper with Doudna were Rachel Haurwitz, Martin Jinek, Blake Wiedenheft and Kaihong Zhou.

CRISPR is a unit of DNA, usually on a microbe’s chromosome, made up of “repeat” elements, base-pair sequences ranging from 30 to 60 nucleotides in length, separated by “spacer” elements, variable sequences that are also from 30 to 60 nucleotides in length. CRISPR units are found in about 40-percent of all bacteria whose genomes have been sequenced, and about 90-percent of archaea. A microbe might have several CRISPR loci within its genome and each locus might contain between four and 100 CRISPR repeat-spacer units. Doudna and her colleagues studied CRISPR in Pseudomonas aeruginosa, a common bacterium that is ubiquitous in the environment.

Rachel Haurwitz, a graduate student in Doudna’s research group and the first author on the Science paper, explains how the CRISPR/Cas immunity system works.

“When a bacterium recognizes that it has been invaded by a virus or a plasmid, it incorporates a small piece of the foreign DNA into one of its CRISPR units as a new spacer sequence. The CRISPR unit is then transcribed as a long RNA segment called the pre-crRNA. The Csy4 enzyme cleaves this pre-crRNA within each repeat element to create crRNAs about 60 nucleotides long that will contain sequences which match portions of the foreign DNA. Cas proteins will use these matching sequences to bind the crRNA to the invading virus or plasmid and silence it.”

Haurwitz says the CRISPR/cas system for silencing foreign DNA in prokaryotes is analogous to the way in which short interfering or siRNAs correct genetic problems in eukaryotes. Over time, the CRISPR/cas system will build up inheritable DNA-encoded immunity from future invasions by the same types of viruses and plasmids.

Team CRISPR (from left) Martin Jinek, Rachel Haurwitz, Blake Wiedenheft, Kaihong Zhou and Jennifer Doudna produced a 1.8 Angstrom resolution image of the enzyme Csy4 using crystallography beamlines at Berkeley Lab’s Advanced Light Source. (Photo by Roy Kaltschmidt, Berkeley Lab Public Affairs)

With their crystal structure model of the Csy4 enzyme bound to its cognate RNA, which features a resolution of 1.8 Angstroms, the Berkeley CRISPR research team has shown that Csy4 makes sequence-specific interactions in the major groove of the CRISPR RNA repeat stem-loop. Together with electrostatic contacts to the phosphate backbone, these interactions enable Csy4 to selectively bind to and cleave pre-crRNAs using phylogenetically conserved residues of the amino acids serine and histidine in the active site.

“Our model explains sequence- and structure-specific processing by a large family of CRISPR-specific endoribonucleases,” Doudna says.

Doudna and her colleagues produced their 1.8 Angstrom resolution crystallographic structure using the experimental end stations of Beamlines 8.2.1 and 8.3.1 at Berkeley Lab’s Advanced Light Source (ALS). Both beamlines are powered by superconducting bending magnets – “superbends” – and both feature state-of-the-art multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) capabilities. Beamline 8.2.1 is part of the suite of protein crystallography beamlines that comprise the Berkeley Center for Structural Biology.

“The ALS and its protein crystallography beamlines continue to be a critical resource for our research, ” Doudna says.

The crRNAs used by the CRISPR/cas system for the targeted interference of foreign DNA join the growing ranks of small RNA molecules that mediate a variety of processes in both eukaryotes and prokaryotes. Understanding how these small RNA molecules work can improve our basic understanding of cell biology and provide important clues to the fundamental role of RNA in the evolution of life.

Says Doudna, “By investigating how bacteria produce and use small RNAs for selective gene targeting, we hope to gain insight into the fundamental features of the pathways that have proven evolutionarily useful for genetic control, both in the bacterial world and in the world of eukaryotes. Right now it looks like bacteria and eukaryotes have evolved entirely distinct pathways by which RNAs are used for gene regulation and that is pretty amazing!”

This work was supported in part by grants from the National Science Foundation and from the Bill and Melinda Gates Foundation.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE’s Office of Science and is managed by the University of California. Visit our Website at www.lbl.gov/

Additional Information

For more information about Jennifer Doudna and her research group see http://rna.berkeley.edu/

For more information about Berkeley Lab’s Advanced Light Source see http://www.als.lbl.gov/

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>