Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From crickets to whales, animal calls have something in common

06.01.2010
Scientists who compare insect chirps with ape calls may look like they are mixing aphids and orangutans, but researchers have found common denominators in the calls of hundreds of species of insects, birds, fish, frogs, lizards and mammals that can be predicted with simple mathematical models.

Compiling data from nearly 500 species, scientists with the University of Florida and Oklahoma State University have found the calls of crickets, whales and a host of other creatures are ultimately controlled by their metabolic rates — in other words, their uptake and use of energy.

"Very few people have compared cricket chirps to codfish sounds to the sounds made by whales and monkeys to see if there were commonalities in the key features of acoustic signals, including the frequency, power and duration of signals," said James Gillooly, Ph.D., an assistant professor in the department of biology at UF's College of Liberal Arts and Sciences and a member of the UF Genetics Institute. "Our results indicate that, for all species, basic features of acoustic communication are primarily controlled by individual metabolism, which in turn varies predictably with body size and temperature. So, when the calls are adjusted for an animal's size and temperature, they even sound alike."

The finding, reported in today's Proceedings of the Royal Society B, will help scientists understand how acoustic communication evolved across species, uniting a field of study that has long focused on the calls of particular groups of animals, such as birds.

The results also provide insights regarding common energetic and neuromuscular constraints on sound production, and the ecological and evolutionary consequences of producing these sounds.

"Acoustic signals are used to transfer information among species that is required for survival, growth and reproduction," Gillooly said. "This work suggests that this information exchange is ultimately governed by the rate at which an animal takes up and uses energy."

Animal communication is a long-studied area of biology, going back at least to the days of Aristotle. But generally the studies were species-specific, made in the context of courting calls or parental care of a certain type of animal — nothing to relate an animal call across a variety of species.

"From my perspective this is one of the first true attempts to provide a general theoretical framework for acoustic communication," said Alexander G. Ophir, Ph.D., an assistant professor of zoology at Oklahoma State, who began the painstaking process of compiling data on animal calls in hundreds of different species while a postdoctoral student at UF. "This seems to provide unifying principles for acoustic communication that can be applied to virtually all species. In terms of producing sounds, we use vocal cords, but other mechanisms of sound production exist, such as insects that rub their legs together. Until now, these sounds have been treated differently. But by providing a general mathematical framework — a baseline — we have a reference point to compare those differences.

"So if we say one animal's call is loud, we can provide a predictive reference point to say whether it is truly loud when compared with other animal sounds," he said.

That common reference point can even predict what animals long extinct — think of Tyrannosaurus rex of "Jurassic Park" fame — may have truly sounded like.

"These findings say if you give me information about an animal of a certain body size and the mechanisms it uses to make sounds, I can give you a rough idea of what it sounds like," said Jeffrey Podos, Ph.D., an associate professor of biology at the University of Massachusetts Amherst, who did not participate in the study. "It allows us to imagine where the evolution of acoustic signals might go, and where it might have come from. Further study will probably put these principles in a more explicit evolutionary framework, but this is an interesting idea and presented with such a broad view. I can't think of anyone in at least 30 years who has tied together data from such a diversity of species. These authors are really trying to see the forest instead of the trees."

John Pastor | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Protein 'spy' gains new abilities
28.04.2017 | Rice University

nachricht How Plants Form Their Sugar Transport Routes
28.04.2017 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>