Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From crickets to whales, animal calls have something in common

06.01.2010
Scientists who compare insect chirps with ape calls may look like they are mixing aphids and orangutans, but researchers have found common denominators in the calls of hundreds of species of insects, birds, fish, frogs, lizards and mammals that can be predicted with simple mathematical models.

Compiling data from nearly 500 species, scientists with the University of Florida and Oklahoma State University have found the calls of crickets, whales and a host of other creatures are ultimately controlled by their metabolic rates — in other words, their uptake and use of energy.

"Very few people have compared cricket chirps to codfish sounds to the sounds made by whales and monkeys to see if there were commonalities in the key features of acoustic signals, including the frequency, power and duration of signals," said James Gillooly, Ph.D., an assistant professor in the department of biology at UF's College of Liberal Arts and Sciences and a member of the UF Genetics Institute. "Our results indicate that, for all species, basic features of acoustic communication are primarily controlled by individual metabolism, which in turn varies predictably with body size and temperature. So, when the calls are adjusted for an animal's size and temperature, they even sound alike."

The finding, reported in today's Proceedings of the Royal Society B, will help scientists understand how acoustic communication evolved across species, uniting a field of study that has long focused on the calls of particular groups of animals, such as birds.

The results also provide insights regarding common energetic and neuromuscular constraints on sound production, and the ecological and evolutionary consequences of producing these sounds.

"Acoustic signals are used to transfer information among species that is required for survival, growth and reproduction," Gillooly said. "This work suggests that this information exchange is ultimately governed by the rate at which an animal takes up and uses energy."

Animal communication is a long-studied area of biology, going back at least to the days of Aristotle. But generally the studies were species-specific, made in the context of courting calls or parental care of a certain type of animal — nothing to relate an animal call across a variety of species.

"From my perspective this is one of the first true attempts to provide a general theoretical framework for acoustic communication," said Alexander G. Ophir, Ph.D., an assistant professor of zoology at Oklahoma State, who began the painstaking process of compiling data on animal calls in hundreds of different species while a postdoctoral student at UF. "This seems to provide unifying principles for acoustic communication that can be applied to virtually all species. In terms of producing sounds, we use vocal cords, but other mechanisms of sound production exist, such as insects that rub their legs together. Until now, these sounds have been treated differently. But by providing a general mathematical framework — a baseline — we have a reference point to compare those differences.

"So if we say one animal's call is loud, we can provide a predictive reference point to say whether it is truly loud when compared with other animal sounds," he said.

That common reference point can even predict what animals long extinct — think of Tyrannosaurus rex of "Jurassic Park" fame — may have truly sounded like.

"These findings say if you give me information about an animal of a certain body size and the mechanisms it uses to make sounds, I can give you a rough idea of what it sounds like," said Jeffrey Podos, Ph.D., an associate professor of biology at the University of Massachusetts Amherst, who did not participate in the study. "It allows us to imagine where the evolution of acoustic signals might go, and where it might have come from. Further study will probably put these principles in a more explicit evolutionary framework, but this is an interesting idea and presented with such a broad view. I can't think of anyone in at least 30 years who has tied together data from such a diversity of species. These authors are really trying to see the forest instead of the trees."

John Pastor | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>