Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creation of the largest human-designed protein boosts protein engineering efforts

16.11.2011
If Guinness World Records had a category for the largest human-designed protein, then a team of Vanderbilt chemists would have just claimed it.

They have designed and successfully synthesized a variant of a protein that nature uses to manufacture the essential amino acid histidine. It is more than twice the size of the previous record holder, a protein created by researchers at the University of Washington in 2003.

The synthetic protein, designated FLR, validates a new approach which the Vanderbilt scientists have developed that allows them to design functional artificial proteins substantially larger than previously possible.

“We now have the algorithms we need to engineer large proteins with shapes that you don’t see in nature. This gives us the tools we need to create new, more effective antibodies and other beneficial proteins,” said Jens Meiler, the associate professor of chemistry at Vanderbilt who led the effort.

Recently, protein engineers have verified a potential treatment strategy for HIV by using designed protein vaccines in mice and have designed artificial proteins that mimic antibodies in broadly neutralizing flu infections. The technique developed at Vanderbilt promises to expand the scope of these efforts substantially.

That is important because proteins are the most important molecules in living cells. They perform most of the vital tasks that take place within a living organism. There are hundreds of thousands of different proteins. They come in a variety of shapes and sizes. They can be round or long and thin, rigid or flexible. But they are all made out of linear chains of 20 amino acids encoded in the genome of the organism.

Proteins assume this variety of shapes and sizes by the manner in which they bunch and fold. This complex process takes two steps. First, small numbers of adjacent amino acids form what scientists call secondary structures: the most common of which are a rod-like spiral shape called the alpha-helix and a flat, pleated shape called the beta-sheet. These secondary structures, in turn, interact, fold and coil to form the protein’s three-dimensional shape, which is the key to its function.

Over the past 10 years an increasing number of proteins that don’t exist in nature have been designed “in silico” (in a computer). Scientists use sophisticated protein modeling software that incorporates the relevant laws of physics and chemistry to find amino acid sequences that fold into stable forms and have specific functions.

Imagine making a necklace 10 beads long with beads that come in 20 different colors. There are more than 10 trillion different combinations to choose among. This provides an idea of the complexity involved in designing novel proteins. For a protein of a given size, the modeling software creates millions of versions by putting each amino acid in every position and evaluating the stability of the resulting molecule. This takes a tremendous amount of computing power which skyrockets as the length of the protein increases.

“The current limit of this approach, even using the fastest supercomputers, is about 120 amino acids,” said Meiler. The previous record holder contained 106 amino acids. The newly designed protein contains 242 amino acids. The Vanderbilt group got around this limit by modifying the widely used protein engineering platform called ROSETTA so that it can incorporate symmetry in the design process.

Their success provides new support for a controversial theory about protein evolution called the gene duplication and fusion hypothesis. The advantage of small proteins is that they can evolve rapidly in response to changing conditions, but larger proteins can perform more complex functions. Nature found a way to get both advantages by selecting small proteins that can interact with other copies of themselves to form larger proteins, which are called dimers. Once useful dimers have been created the gene that coded for the original protein is duplicated and fused to form a new gene that can directly produce the dimer. After it is created, the dimer gene is gradually modified by natural selection to make it more efficient or develop new functions

Because they have two identical halves, dimers have a large degree of symmetry. By taking these symmetries into account, the Vanderbilt group was able to substantially reduce the amount of computing time required to create the FLR protein. Using 400 processors of the supercomputer at Vanderbilt’s Advanced Computing Center for Research and Education, it took 10 days of continuous processing to find the most stable configuration.
To check the accuracy of their design, the researchers synthesized the DNA sequence that produces the protein, inserted it in E.coli bacteria and determined that they produced the protein and it folded properly.

The FLR protein assumes a 3-D shape called a TIM barrel, which is found in 10 percent of proteins and is particularly prevalent among enzymes. It is formed from eight beta strands that are surrounded by eight alpha helices arranged in a hexagonal shape like a tiny barrel.

The paper reporting this achievement appears in the Nov. 16 issue of the Journal of American Chemical Society and is available online. Members of Meiler’s team are research assistant Carie Fortenberry, undergraduate students Elizabeth Bowman, Will Proffitt, and Brent Dorr and research assistant professors of biochemistry Joel Harp and Laura Mizoue. The research was supported by grants from the Defense Advanced Research Projects Agency’s protein design project and the National Science Foundation.

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>