Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creating a Parallel Biological World with a Genetic Firewall

18.04.2011
Breaking new ground in whole-cell catalysis using artificial bacteria

In the UniCat Cluster of Excellence (Unifying Concepts in Catalysis) in Berlin, a new concept is being developed by biochemist Nediljko Budisa in collaboration with French biologist Philippe Marlière that aims to equip industrial bacteria for new catalytic functions. They call this new technique „codon emancipation“.

At the same time a genetic firewall is established, making the bacteria dependent on a special growth medium. This means that they cannot survive in a natural set-ting, making the transfer of genes into the environment impossible.

Budisa and Marlière hope to replace old-fashioned natural chemistry with a new type of science. This development is to be achieved through the directed evolution of more natural, faster-growing bacteria in a test tube. “These cells are, in a manner of speaking, in a parallel world,” explains Budisa. They cannot exchange their genetic information with other creatures; they are equipped with a genetic firewall.”

At the start of the process the bacteria will in fact grow very badly in the synthetic growth medium with the non-natural amino acids. But by cultivating them for several generations, they will eventually become „codon emancipated”. „Codon emancipation” offers the possibility of providing living systems with new chemistry. On the one hand, the way to artificial biological diversity is viewed with scepticism in scientific circles. But on the other, if the process is successful then the resulting cells will be enormously useful in industry. For example, new environmentally friendly bio catalysts for manufacturing fuel, new active ingredients for medicinal products and more environmentally friendly biomaterials are just some conceivable uses. At the same time this project provides the scientific community with an opportunity to consider problems and misgivings concerning the biosafety of synthetic organisms and to address these publicly.

The chemically modified bacteria will theoretically be viable for an unlimited period of time in genetic isolation from natural species. As soon as the non-natural amino acids are no longer provided in the growth medium, they will die. The “codon emancipation” therefore constructs a "genetic firewall" against a potential genetic exchange between artificial and natural cells.

Philippe Marlière explains, “We plan to rewrite the entire genomic text of the microbes in the test tubes through cumulative mutations, creating quick-growing cells with permanent evolutionary pressure. To do this, we have developed an automaton, what is known as a “gene machine” over the course of the last ten years.”

These developments are at the forefront of synthetic biology. The work of the renowned Americans Craig Venter and George Church is in contrast more or less within the framework of classic genetic engineering, based as it is on the copying and resynthesising of structures that are present in nature with the help of synthetic DNA oligomers.

Matthias Driess, Chair of the UniCat Cluster of Excellence, is enthusiastic about the prospects for the work based on the joint expertise of Budisa and Marlière. “This will be an excellent reinforcement to the bio part of our Cluster. Philippe is a superb innovator, while Nediljko is an original thinker with a superb intellectual profile and a hard worker who has followed his own original ideas and ambitious targets for decades, without being distracted by the scientific mainstream or the fashions in the German research scene, by which I mean he successfully swims against all the tides. We anticipate not only the development of a unique whole-cell catalyst, but also the development of artificial life forms with functions that have not yet been invented by natural evolution.”

The genetic code and the concept of „codon emancipation“

The genetic code was solved in 1966 and is identical for all living creatures. This means that in every organism, a specific sequence of nucleic acids in the DNA carries the same protein molecule.

The genetic code determines the way in which the sequence of bases adenine (A), cytosine (C), guanine (G) and thymine (T) are translated into protein. Every three bases stand for one amino acid, in a triplet known as a codon. There are only 64 codons that generate 20 amino acids. This means that the majority of amino acids are encoded by several codons.

For example, the amino acid arginine can be represented using the six codons CGG, CGA, CGC, CGU, AGG and AGA. AGG and AGA are used very seldom in bacteria such as Escherichia coli. Thus theoretically, for example, all AGGs in the genetic makeup of a living creature could be allocated a new, non-natural amino acid. The cell is then said to be “codon emancipated”, meaning that the old chemistry has been replaced with new.

The Cluster of Excellence Unifying Concepts in Catalysis (UniCat)

“Unifying Concepts in Catalysis” (UniCat) is the sole Cluster of Excellence researching the economically important field of catalysis. More than 250 chemists, physicists, biologists and engineers from four universities and two Max Planck research institutes from Berlin and Potsdam are involved in this interdisciplinary research network. The Cluster is hosted by the Technische Universität Berlin. UniCat receives funding of approximately 5.6 million Euro each year as part of the Excellence Initiative of the German Research Foundation.

For further information, please contact:
Prof. Dr. Nediljko Budisa, TU Berlin, Department of Chemistry
Tel.: + 49 (0) 30 314-23 661, E-Mail: budisa@biocat.tu-berlin.de
www.biocat.tu-berlin.de
Dr. Martin Penno, UniCat Cluster of Excellence, Public Relations Officer, TU Berlin, Tel.: + 49 (0) 30 314-28 592, E-Mail: martin.penno@tu-berlin.de

References:

Hoesl, M. and Budisa, N. (2011). In Vivo Incorporation of Multiple Noncanonical Amino Acids into Proteins. Angew. Chem. Int. Ed. Engl. 50, 2896-2902.

http://onlinelibrary.wiley.com/doi/10.1002/anie.201005680/full

Schmidt, M. (2010), Xenobiology: A new form of life as the ultimate biosafety tool. BioEssays, 32, 322–331

http://onlinelibrary.wiley.com/doi/10.1002/bies.200900147/abstract

Marliere P. (2009). The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world. Syst. Synth. Biol. 3, 77-84.

http://www.springerlink.com/content/j504q5032553n326/

Budisa, N. (2004). Prolegomena to future experimental efforts on genetic code engineering by expanding its amino acid repertoire. Angew. Chem. Int. Ed. Engl. 43, 6426-6463.

http://onlinelibrary.wiley.com/doi/10.1002/anie.200300646/abstract

Stefanie Terp | idw
Further information:
http://www.tu-berlin.de/

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>