Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Crayfish Brain May Offer Rare Insight into Human Decision Making

Crayfish make surprisingly complex, cost-benefit calculations, finds a University of Maryland study - opening the door to a new line of research that may help unravel the cellular brain activity involved in human decisions.

The Maryland psychologists conclude that crayfish make an excellent, practical model for identifying the specific neural circuitry and neurochemistry of decision making. They believe their study is the first to isolate individual crayfish neurons involved in value-based decisions. Currently, there's no direct way to do this with a human brain.

The study will be published in the Proceedings of the Royal Society B, and is being released online by the journal today.

"Matching individual neurons to the decision making processes in the human brain is simply impractical for now," explains University of Maryland psychologist Jens Herberholz, the study's senior author.

"History has shown that findings made in the invertebrate nervous systems often translate to more complex organisms. It's unlikely to be exactly the same, but it can inform our understanding of the human brain, nonetheless. The basic organization of neurons and the underlying neurochemistry are similar, involving serotonin and dopamine, for example."

Herberholz adds that his lab's work may inform ongoing studies in rodents and primates. "Combining the findings from different animal models is the only practical approach to work out the complexities of human decision making at the cellular level."


The experiments offered the crayfish stark decisions - a choice between finding their next meal and becoming a meal for an apparent predator. In deciding on a course of action, they carefully weighed the risk of attack against the expected reward, Herberholz says.

Using a non-invasive method that allowed the crustaceans to freely move, the researchers offered juvenile Louisiana Red Swamp crayfish a simultaneous threat and reward: ahead lay the scent of food, but also the apparent approach of a predator.

In some cases, the "predator" (actually a shadow) appeared to be moving swiftly, in others slowly. To up the ante, the researchers also varied the intensity of the odor of food.

How would the animals react? Did the risk of being eaten outweigh their desire to feed? Should they "freeze" - in effect, play dead, hoping the predator would pass by, while the crayfish remained close to its meal - or move away from both the predator and food?

To make a quick escape, the crayfish flip their tails and swim backwards, an action preceded by a strong, measurable electric neural impulse. The specially designed tanks could non-invasively pick up and record these electrical signals. This allowed the researchers to identify the activation patterns of specific neurons during the decision-making process.

Although tail-flipping is a very effective escape strategy against natural predators, it adds critical distance between a foraging animal and its next meal.

The crayfish took decisive action in a matter of milliseconds. When faced with very fast shadows, they were significantly more likely to freeze than tail-flip away.

The researchers conclude that there is little incentive for retreat when the predator appears to be moving too rapidly for escape, and the crayfish would lose its own opportunity to eat. This was also true when the food odor was the strongest, raising the benefit of staying close to the expected reward. A strong predator stimulus, however, was able to override an attractive food signal, and crayfish decided to flip away under these conditions.

"Our results indicate that when the respective values of tail-flipping and freezing change, the crayfish adjust their choices accordingly, thus preserving adaptive action selection," the researchers write. "We have now shown that crayfish, similar to organisms of higher complexity, integrate different sensory stimuli that are present in their environment, and they select a behavioural output according to the current values for each choice."

The next step is to identify the specific cellular and neurochemical mechanisms involved in crayfish decisions, which is more feasible in an animal with fewer and accessible neurons, Herberholz says. That research is now underway.

Herberholz's research is funded by grants from the National Science Foundation and University of Maryland's Division of Research.

Media may obtain a pdf-version of the study (under the terms of the embargo) by contacting Neil Tickner at the University of Maryland Office of Communications: 301-405-4622;

Neil Tickner | EurekAlert!
Further information:

Further reports about: Brain Human vaccine Management Insights feature crayfish human brain

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>