Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crayfish Brain May Offer Rare Insight into Human Decision Making

16.06.2010
Crayfish make surprisingly complex, cost-benefit calculations, finds a University of Maryland study - opening the door to a new line of research that may help unravel the cellular brain activity involved in human decisions.

The Maryland psychologists conclude that crayfish make an excellent, practical model for identifying the specific neural circuitry and neurochemistry of decision making. They believe their study is the first to isolate individual crayfish neurons involved in value-based decisions. Currently, there's no direct way to do this with a human brain.

The study will be published in the Proceedings of the Royal Society B, and is being released online by the journal today.

"Matching individual neurons to the decision making processes in the human brain is simply impractical for now," explains University of Maryland psychologist Jens Herberholz, the study's senior author.

"History has shown that findings made in the invertebrate nervous systems often translate to more complex organisms. It's unlikely to be exactly the same, but it can inform our understanding of the human brain, nonetheless. The basic organization of neurons and the underlying neurochemistry are similar, involving serotonin and dopamine, for example."

Herberholz adds that his lab's work may inform ongoing studies in rodents and primates. "Combining the findings from different animal models is the only practical approach to work out the complexities of human decision making at the cellular level."

SPECIFIC FINDINGS AND CONCLUSIONS

The experiments offered the crayfish stark decisions - a choice between finding their next meal and becoming a meal for an apparent predator. In deciding on a course of action, they carefully weighed the risk of attack against the expected reward, Herberholz says.

Using a non-invasive method that allowed the crustaceans to freely move, the researchers offered juvenile Louisiana Red Swamp crayfish a simultaneous threat and reward: ahead lay the scent of food, but also the apparent approach of a predator.

In some cases, the "predator" (actually a shadow) appeared to be moving swiftly, in others slowly. To up the ante, the researchers also varied the intensity of the odor of food.

How would the animals react? Did the risk of being eaten outweigh their desire to feed? Should they "freeze" - in effect, play dead, hoping the predator would pass by, while the crayfish remained close to its meal - or move away from both the predator and food?

To make a quick escape, the crayfish flip their tails and swim backwards, an action preceded by a strong, measurable electric neural impulse. The specially designed tanks could non-invasively pick up and record these electrical signals. This allowed the researchers to identify the activation patterns of specific neurons during the decision-making process.

Although tail-flipping is a very effective escape strategy against natural predators, it adds critical distance between a foraging animal and its next meal.

The crayfish took decisive action in a matter of milliseconds. When faced with very fast shadows, they were significantly more likely to freeze than tail-flip away.

The researchers conclude that there is little incentive for retreat when the predator appears to be moving too rapidly for escape, and the crayfish would lose its own opportunity to eat. This was also true when the food odor was the strongest, raising the benefit of staying close to the expected reward. A strong predator stimulus, however, was able to override an attractive food signal, and crayfish decided to flip away under these conditions.

"Our results indicate that when the respective values of tail-flipping and freezing change, the crayfish adjust their choices accordingly, thus preserving adaptive action selection," the researchers write. "We have now shown that crayfish, similar to organisms of higher complexity, integrate different sensory stimuli that are present in their environment, and they select a behavioural output according to the current values for each choice."

The next step is to identify the specific cellular and neurochemical mechanisms involved in crayfish decisions, which is more feasible in an animal with fewer and accessible neurons, Herberholz says. That research is now underway.

Herberholz's research is funded by grants from the National Science Foundation and University of Maryland's Division of Research.

Media may obtain a pdf-version of the study (under the terms of the embargo) by contacting Neil Tickner at the University of Maryland Office of Communications: 301-405-4622; ntickner@umd.edu

Neil Tickner | EurekAlert!
Further information:
http://www.umd.edu

Further reports about: Brain Human vaccine Management Insights feature crayfish human brain

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>