Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracking the species code for plants

18.02.2009
Plants are essential to our survival and that of most other animals on earth.

It is easy to overlook this fact because they have become discretely embedded into our everyday lives. Plants provide us with food, medicines, and raw materials used by our industries. In spite of their importance, very few of us could name more than a tiny fraction of the plants that surround us.

True, most would have little difficulty in distinguishing between a buttercup from a dandelion (provided both are in flower) but only a hand full of experts could identify all 1600 native plants in the UK, and nobody is able to name all of the 250,000 or so plant species recorded world-wide.

Accurate plant identification on a large scale is nevertheless vital if we are to protect the most biodiverse regions of the world. Equally, plant identification based on DNA could help in the search for new sources of pharmaceutical drugs, check ingredients in food and industrial products or provide a new source of forensics information for criminal investigations.

In a step towards addressing these needs, a consortium of scientists from the United Kingdom, the USA, Sweden and Syria have collaborated in the search for one or more short pieces of DNA code that could eventually be used in an automated fashion to reliably identify almost all land plant species.

This study, recently published in the Botanical Journal of the Linnean Society, has provided a short-list of six gene regions that are present across almost all land plants, suitable for use on processed food products and sufficiently variable in their code to allow separation of closely related species. The next step is to test these regions (and a small number of others identified previously) against a very large number of plants from throughout the world.

Davina Quarterman | alfa
Further information:
http://www3.interscience.wiley.com/journal/121639682/abstract

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>