Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracking the plant-cell membrane code

23.03.2010
To engineer better, more productive crops and develop new drugs to combat disease, scientists look at how the sensor-laden membranes surrounding cells control nutrient and water uptake, secrete toxins, and interact with the environment and neighboring cells to affect growth and development.

Remarkably little is known about how proteins interact with these protective structures. With National Science Foundation funding, researchers at the Carnegie Institution's Department of Plant Biology are using the first high-throughput screen for any multicellular organism to pinpoint these interactions using the experimental plant Arabidopsis.

They have analyzed some 3.4 million potential protein/membrane interactions and have found 65,000 unique relationships. They made the preliminary data available today to the biological community by way of the Website www.associomics.org/search.php. Since proteins are similar in all organisms, the work is relevant to fields from farming to medicine.

"This is just the beginning," remarked Wolf Frommer director of Carnegie's Department of Plant Biology. "Arabidopsis shares many of its genes with other organisms including humans. As the library of interacting proteins grows, scientists around the world will be able to study the details of protein interactions to understand how they are affected by forces such as climate change and disease and how they can be harnessed to produce better crops and medicines more effectively."

All of a cell's internal machinery relies on the binding of proteins. Complementary shaped proteins dock with one another to start processes, such as turning on a gene or letting in the proper nutrient. These membrane proteins make up some 20-30% of the proteins in Arabidopsis, a relative of the mustard plant.

The team uses a screen called the mating-based protein complementation assay, or split ubiquitin system. Ubiquitin is a small protein. The scientists fuse candidate proteins onto a version of ubiquitin that is split in half. When the two candidates interact, the two halves of the ubiquitin reassemble, triggering a process that liberates a transcription factor—a protein that switches a gene on—which then goes to the nucleus. When genes are turned on in the nucleus, the researchers are alerted to the successful interaction. The ultimate goal is to test the 36 million potential interactions as well as the sensitivity of the interactions to small molecules with a high-throughput robotics system.

The group plans to start a second round of screening at the end of this month to test another 3.4 million interactions.

This work was made possible by grants from NSF 2010 : Towards a comprehensive Arabidopsis protein interactome map: Systems biology of the membrane proteins and signalosomes (grant MCB-0618402) in addition to support from Carnegie. Other participants on the 2010 project include UCSD, Penn State and the University of Maryland. The group previously donated 2010 clones to the Arabidopsis Biological Resource Center (ABRC is at Ohio State University), and more recently another 1010 for other scientists to use to help advance fields from medicine to farming.

The Carnegie Institution for Science (www.CarnegieScience.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Wolf Frommer | EurekAlert!
Further information:
http://www.CarnegieScience.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>