Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracking cellulose: a step into the biofuels future

01.09.2011
Scientists from the University of York have played a pivotal role in a discovery which could finally unlock the full potential of waste plant matter to replace oil as a fuel source.

Professor Paul Walton and Professor Gideon Davies, of the University's Department of Chemistry, were part of an international team that has found a method to overcome the chemical intractability of cellulose, thus allowing it to be converted efficiently into bioethanol.

Working with scientists in Novozymes laboratories at Davis, California, and Bagsvaerd, Denmark, as well as researchers at the University of Copenhagen and the University of Cambridge, they identified the molecular mechanism behind an enzyme found in fungi which can degrade the cellulose chains of plant cell walls to release shorter sugars for biofuels.

This represents a major breakthrough as cellulose is the world's most abundant biopolymer. Global generation of cellulose is equivalent in energy to 670 billion barrels of oil – some 20 times the current annual global oil consumption. The discovery opens the way for the industrial production of fuels and chemicals from plentiful and renewable cellulose in waste plant matter.

The research, which is published in the Proceedings of the National Academy of Sciences (PNAS), removes the major constraint on the production of bioethanol from cellulose the stability of which had previously thwarted previous efforts to make effective use of it for biofuels.

The researchers found a way of initiating effective oxidative degeneration of cellulose using the copper-dependent TaGH61 enzyme to overcome the chemical inertness of the material.

Professor Davies, much of whose work on plant cell-wall degradation is funded by the Biotechnology and Biological Sciences Research Council, said: "Cracking cellulose represents one of the principal industrial and biotechnological challenges of the 21st century. Industrial production of fuels and chemicals from this plentiful and renewable resource holds the potential to displace petroleum-based sources, thus reducing the associated economic and environmental costs of oil and gas production. Events at Fukushima and the continuing instability in major oil producing countries only highlight the need for a balanced energy portfolio."

Professor Walton added: "This discovery opens up a major avenue in the continuing search for environmentally friendly and secure energy. The potential of bioethanol to make a major contribution to sustainable energy really now is a reality."

Claus Crone Fuglsang, Managing Director at Novozymes' research labs in Davis, California said: "Scientists have worked to figure out how to break down plant matter for the past 50-60 years. The impressive effect of GH61 was established a few years back and today it is a key feature of our Cellic CTec products.

"Fully understanding the mechanism behind GH61 is important in the context of commercial production of biofuel from plant waste and a true scientific paradigm shift. This discovery will continue to drive advances in production of other biobased chemicals and materials in the future."

Leila Lo Leggio, Group Leader of the Biophysical Chemistry Group at the Department of Chemistry, University of Copenhagen, said: "As a team of academic scientists, it is particularly rewarding when our basic research in the three-dimensional structure and chemistry of proteins also contributes to possible solutions for one of the major challenges our society is facing."

Professor Paul Dupree of the University of Cambridge Bioenergy Initiative and Director of the BBSRC Sustainable Bioenergy Cell Wall Sugars programme, said "Understanding the GH61 enzyme activity is one of the most significant recent advances in the area of biomass deconstruction and release of cell wall sugars."

David Garner | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>