Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracking cellulose: a step into the biofuels future

01.09.2011
Scientists from the University of York have played a pivotal role in a discovery which could finally unlock the full potential of waste plant matter to replace oil as a fuel source.

Professor Paul Walton and Professor Gideon Davies, of the University's Department of Chemistry, were part of an international team that has found a method to overcome the chemical intractability of cellulose, thus allowing it to be converted efficiently into bioethanol.

Working with scientists in Novozymes laboratories at Davis, California, and Bagsvaerd, Denmark, as well as researchers at the University of Copenhagen and the University of Cambridge, they identified the molecular mechanism behind an enzyme found in fungi which can degrade the cellulose chains of plant cell walls to release shorter sugars for biofuels.

This represents a major breakthrough as cellulose is the world's most abundant biopolymer. Global generation of cellulose is equivalent in energy to 670 billion barrels of oil – some 20 times the current annual global oil consumption. The discovery opens the way for the industrial production of fuels and chemicals from plentiful and renewable cellulose in waste plant matter.

The research, which is published in the Proceedings of the National Academy of Sciences (PNAS), removes the major constraint on the production of bioethanol from cellulose the stability of which had previously thwarted previous efforts to make effective use of it for biofuels.

The researchers found a way of initiating effective oxidative degeneration of cellulose using the copper-dependent TaGH61 enzyme to overcome the chemical inertness of the material.

Professor Davies, much of whose work on plant cell-wall degradation is funded by the Biotechnology and Biological Sciences Research Council, said: "Cracking cellulose represents one of the principal industrial and biotechnological challenges of the 21st century. Industrial production of fuels and chemicals from this plentiful and renewable resource holds the potential to displace petroleum-based sources, thus reducing the associated economic and environmental costs of oil and gas production. Events at Fukushima and the continuing instability in major oil producing countries only highlight the need for a balanced energy portfolio."

Professor Walton added: "This discovery opens up a major avenue in the continuing search for environmentally friendly and secure energy. The potential of bioethanol to make a major contribution to sustainable energy really now is a reality."

Claus Crone Fuglsang, Managing Director at Novozymes' research labs in Davis, California said: "Scientists have worked to figure out how to break down plant matter for the past 50-60 years. The impressive effect of GH61 was established a few years back and today it is a key feature of our Cellic CTec products.

"Fully understanding the mechanism behind GH61 is important in the context of commercial production of biofuel from plant waste and a true scientific paradigm shift. This discovery will continue to drive advances in production of other biobased chemicals and materials in the future."

Leila Lo Leggio, Group Leader of the Biophysical Chemistry Group at the Department of Chemistry, University of Copenhagen, said: "As a team of academic scientists, it is particularly rewarding when our basic research in the three-dimensional structure and chemistry of proteins also contributes to possible solutions for one of the major challenges our society is facing."

Professor Paul Dupree of the University of Cambridge Bioenergy Initiative and Director of the BBSRC Sustainable Bioenergy Cell Wall Sugars programme, said "Understanding the GH61 enzyme activity is one of the most significant recent advances in the area of biomass deconstruction and release of cell wall sugars."

David Garner | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>