Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracking the Blue-Green Code

25.07.2013
Study of gene expression in common blue-green algae reveals what makes it bloom, toxic

If your local pond, lake, or watering hole is looking bright green this summer, chances are it has blue-green algae and it may be dangerous to you or your pets. A newly published study has used a novel approach to better understand why these algae form blooms and what makes them toxic.


Christopher Gobler

Blue-green algae blooms formed by Microcystis

Matthew Harke and Christopher Gobler of Stony Brook University’s School of Marine and Atmospheric Sciences, used global gene expression analysis of the most common blue-green algae, Microcystis, to uncover how it uses different types of nutrients to form blooms and what regulates the production of its toxin, microcystin. The study, entitled “Global transcriptional responses of the toxic cyanobacterium, Microcystis aeruginosa, to nitrogen stress, phosphorus stress, and growth on organic matter,” published in the July 23rd edition of the journal PLoS ONE, is the first to use this approach with this algae.

“Toxic blue-green algae blooms are a common phenomenon in freshwater lakes and ponds, particularly during summer and early fall,” says Dr. Gobler. “These algae can create various toxins that can harm humans, pets, and aquatic life.”

And the problem is worsening. “The distribution, frequency and intensity of these events have increased across the globe and in the US in places like the Great Lakes and scientists have been struggling to determine why this is happening,” notes Gobler.

Individual algae cells so tiny—50 of them side by side span only the width of a single hair—that they may seem harmless. But when billions of blue green algae come together, they can be dangerous to humans and damaging to aquatic life. Human exposure to blue-green algal toxins can be through drinking water supply or direct contact with blooms via recreation.

This study grew the toxic blue-green algae known as Microcystis with high and low levels of different sources of nutrients such as nitrogen and phosphorus and used high-throughput sequencing of its transcriptome to simultaneously evaluate the expression of all 6,300 of the genes in its genome. In doing so, the study revealed the sets of genes it uses to sustain blooms, specifically during summer when some types of nutrients can be in short supply, and yet Microcystis still grows quickly.

“This algae has a series of ‘gene pathways’ it can turn on to continue to grow rapidly, even as environmental conditions change,” said first author and doctoral student Matthew Harke. “We think this ability to quickly turn on and off different genes to grow when nitrogen or phosphorus levels are high or low and to use organic or inorganic nutrients may be a key to its success.”

An additional striking finding in the study was the ability of nitrogen to alter the toxicity of Microcystis. Scientists have long debated the relative importance of nitrogen and phosphorus in controlling blue-green algae blooms. “By examining all of the genes responsible for synthesizing the microcystin toxin, we were specifically able to see that these genes were turned off when the nitrogen supply of Microcystis ran out and that the cells contained less toxin,” said senior author, Dr. Christopher Gobler.

The findings of the study lend support to the notion that limiting nutrient input into lakes will restrict the intensity of blue-green algae blooms. The findings also demonstrated that lessening the input of both nitrogen and phosphorus may be needed to reduce the density and toxicity of these events.

About Stony Brook University
Part of the State University of New York system, Stony Brook University encompasses 200 buildings on 1,450 acres. Since welcoming its first incoming class in 1957, the University has grown tremendously, now with more than 24,000 students and 2,200 faculty. Its membership in the prestigious Association of American Universities (AAU) places Stony Brook among the top 62 research institutions in North America. U.S. News & World Report ranks Stony Brook among the top 40 public universities in the nation and Kiplinger named it the 22nd best value in public colleges for in-state students and 9th for out-of-state students. One of four University Center campuses in the SUNY system, Stony Brook University co-manages Brookhaven National Laboratory, putting it in an elite group of universities that run federal research and development laboratories. As the largest single-site employer on Long Island, Stony Brook is a driving force of the regional economy, with an annual economic impact of $4.65 billion, generating nearly 60,000 jobs, and accounts for nearly 4% of all economic activity in Nassau and Suffolk counties, and roughly 7.5 percent of total jobs in Suffolk County.
Christopher Gobler, Stony Brook University; Christopher.gobler@stonybrook.edu
631-871-2109
Related Links:
Chris Gobler, Stony Brook University: http://www.somas.stonybrook.edu/people/gobler.html

About blue green algae: http://www-cyanosite.bio.purdue.edu/

Christopher Gobler | Newswise
Further information:
http://www.stonybrook.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>