Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crab claws pack strengthening bromide-rich biomaterial

27.02.2009
University of Oregon-led study is part of effort to tap nature's secrets for building tiny tools

Next time you have an unlucky encounter with a crab's pinchers, consider that the claw tips may be reinforced with bromine-rich biomaterial 1.5 times harder than acrylic glass and extremely fracture resistant, says a University of Oregon scientist.

Residents on the U.S. West Coast may have had close encounters with the biomaterial -- detailed by a seven-member team in a paper published online in advance of regular publication in the Journal of Structural Biology. The translucent substance empowers the claw tips of the striped (or lined) shore crab (Pachygrapsus cassipes) as the pinchers pick and hold prey. It also is present on the walking legs of Dungeness crabs (Cancer magister), a dining delicacy in the Pacific Northwest.

"The types of crabs that use this trick for their claw tips rely on the tips fitting together like forceps in order to pick and hold bits of food, and fracture damage could make the tips useless," said the study's lead author Robert Schofield, a researcher in the UO physics department. "These crabs include many common crabs such as hermit crabs, which have one large claw for crushing, and a small claw tipped with this newly discovered biomaterial for finer work."

The claws of the Dungeness crab, he noted, are designed for crushing instead of fine manipulations, and are not tipped with this material. But their legs are, he said.

"The next time you are eating a Dungeness crab, notice that the sharp tip of the leg is a cap of translucent material that is very different from the rest of the crab," he said. "Notice how difficult it is to break the tip, even though it is very thin. This biomaterial can bend six times further before breaking than the material used in other regions. If the tip were made of the same material as the rest of the crab, it could never stay sharp and the crab would have difficulty clinging."

This bromine-rich material at the tips of crab claws and legs is a new member of a class of structural biomaterials that employ heavy atoms like zinc, iodine and iron. "It's not yet clear why heavy elements are used," Schofield said. "Perhaps the mass of the atoms themselves plays a role in damping vibrations that can lead to fracture."

These heavy-element biomaterials had escaped notice until now because they are typically employed by small organisms such as insects. Schofield was lead author of a study published in 2001 that had identified their presence in mandibular teeth, tarsal claws, stings and other such tools of small organisms.

In order to measure the mechanical properties of these tiny structures, the researchers had to develop machines and techniques that would work for tiny samples.

"It turns out that fracture tends to be a bigger problem for small organisms than for large ones," Schofield said. "Humans are just starting to try to engineer tiny machines and tools, and we have a lot still to learn from organisms that have coped with being small for millions of years."

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu
http://physics.uoregon.edu/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

German Federal Government Promotes Health Care Research

29.03.2017 | Awards Funding

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>