Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cow manure harbors diverse new antibiotic resistance genes

22.04.2014

Manure from dairy cows, which is commonly used as a farm soil fertilizer, contains a surprising number of newly identified antibiotic resistance genes from the cows' gut bacteria.

The findings, reported in mBio® the online open-access journal of the American Society for Microbiology, hints that cow manure is a potential source of new types of antibiotic resistance genes that transfer to bacteria in the soils where food is grown.

Thousands of antibiotic resistance (AR) genes have already been identified, but the vast majority of them don't pose a problem when found in harmless bacteria. The real worry is when these genes appear in the types of pathogenic bacteria that cause food-borne illnesses or hospital infections.

"Since there is a connection between AR genes found in environmental bacteria and bacteria in hospitals, we wanted to know what kind of bacteria are released into the environment via this route," of manure fertilization, says Fabienne Wichmann, lead study author and former postdoctoral researcher at Yale University in New Haven, Connecticut.

Farmers use raw or composted cow manure on some vegetable crops, which could lead to a scenario where residual manure bacteria might cling to produce and they or their genes might move to the human ecosystem. "Is this a route for movement of these genes from the barn to the table?" asks Jo Handelsman, senior study author and microbiologist at Yale.

The first step toward an answer was surveying which AR genes are present in cow manure. Handelsman's team used a powerful screening-plus-sequencing approach to identify 80 unique and functional AR genes. The genes made a laboratory strain of Escherichia coli bacteria resistant to one of four types of antibiotics—beta-lactams (like penicillin), aminoglycosides (like kanamycin), tetracycline, or chloramphenicol.

Roughly 75% of the 80 AR genes had sequences that were only distantly related to AR genes already discovered. The team also found an entire new family of AR genes that confer resistance to chloramphenicol antibiotics, which are commonly used to treat respiratory infections in livestock.

"The diversity of genes we found is remarkable in itself considering the small set of five manure samples," says Handelsman, who is also a Howard Hughes Medical Institute Professor. "But also, these are evolutionarily distant from the genes we already have in the genetic databases, which largely represent AR genes we see in the clinic."

That might signal good news that AR genes from cow gut bacteria are not currently causing problems for human patients. But, Wichmann points out, another possibility is that "cow manure harbors an unprecedented reservoir of AR genes" that could be next to move into humans.

"This is just the first in a sequence of studies—starting in the barn, moving to the soil and food on the table and then ending up in the clinic—to find out whether these genes have the potential to move in that direction," says Handelsman.

AR genes can enter the human ecosystem by two routes—either the bacteria that contain them colonize humans, or the genes are transferred through a process called horizontal gene transfer to other bacteria that colonize humans. Research has already shown that bacteria are transferred from farm animals to their human caretakers. Gene transfer enables genes to jump between microorganisms that are not related, and it occurs in most environments that host bacteria.

Some manure bacteria might be pathogenic to humans, so if they acquire antibiotic resistance, they could pose a problem. Alternatively, benign bacteria in manure might transfer resistance genes to pathogens at any point along the path—in manure, soil, food, or humans.

"We're hoping this study will open up a larger field of surveillance, to start looking at new types of resistance before they show up in the clinic," says Handelsman.

###

The study was funded by the Swiss National Science Foundation and the US National Institutes of Health.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | Eurek Alert!

Further reports about: animals antibiotic crops ecosystem environment genes microbiology movement pathogenic resistance spectrum

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>