Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to count nanoparticles

10.10.2011
Nanoparticles of a substance can be counted and the size distribution can be determined by dispersing the nanoparticles into a gas. But some nanoparticles tend to aggregate when the surrounding conditions change. Scientists at the University of Gothenburg, Sweden, have shown that it is possible to sort and count the particles, even when they have formed aggregates.
"Nanoparticles are already used in many everyday products, such as sunscreen and cosmetics. It is important to be able to determine their size, shape and surface area, in order to be able to improve their properties within various areas of application", says Ann-Cathrin Johnsson of the Department of Chemistry at the University of Gothenburg.

A nanoparticle is a particle with a diameter that is much smaller than one millionth of a metre. Such small particles are not influenced by gravity and thus they do not fall to the bottom of a liquid or gas, and instead spread out throughout the container. Their area of contact with the surrounding medium is very large due to their small size, as a result many interesting properties arise. Nanoparticles of a substance behave, quite simply, differently than large particles of the same substance.

Certain types of nanoparticles can start to aggregate in special conditions, and sometimes a so called gel may form. The process is similar to that of boiling an egg: the proteins in the egg white aggregate and form the solid-like structure that we recognise as boiled egg.

Ann-Cathrin Johnsson's thesis work has studied one of these aggregating systems, colloidal silica. The gel that forms when salt is added to colloidal silica can be used, for example, to seal rock and to stabilise soil.

"I started with a method that had been used only for analysing nanoparticles that had not aggregated, and developed it further. Nanoparticles that have aggregated can be analysed individually if a colloidal silica gel, which contains these aggregated nanoparticles, is first diluted and then dispersed into the gas phase. If the samples are analysed immediately after being diluted, this method gives an accurate picture of the gelated system.

The thesis has been successfully defended.
For more information, please contact: Ann-Cathrin Johnsson
Telephone: +46 31 786 9067
Mobile: +46 70 225 5723
Email: ann-catrin.johnson@chem.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://hdl.handle.net/2077/26662

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>