Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Correcting sickle cell disease with stem cells

29.09.2011
Using a patient’s own stem cells, researchers at Johns Hopkins have corrected the genetic alteration that causes sickle cell disease (SCD), a painful, disabling inherited blood disorder that affects mostly African-Americans. The corrected stem cells were coaxed into immature red blood cells in a test tube that then turned on a normal version of the gene.

The research team cautions that the work, done only in the laboratory, is years away from clinical use in patients, but should provide tools for developing gene therapies for SCD and a variety of other blood disorders.

In an article published online August 31 in Blood, the researchers say they are one step closer to developing a feasible cure or long-term treatment option for patients with SCD, which is caused by a single DNA letter change in the gene for adult hemoglobin, the principle protein in red blood cells needed to carry oxygen. People who inherited two copies — one from each parent — of the genetic alteration, the red blood cells are sickle-shaped, rather than round. The misshapen red blood cells clog blood vessels, leading to pain, fatigue, infections, organ damage and premature death.

Although there are drugs and painkillers that control SCD symptoms, the only known cure — achieved rarely — has been bone marrow transplant. But because the vast majority of SCD patients are African-American and few African-Americans have registered in the bone marrow registry, it has been difficult to find compatible donors, says Linzhao Cheng, Ph.D., a professor of medicine and associate director for basic research in the Division of Hematology and also a member of the Johns HopkinsInstitute for Cell Engineering. “We’re now one step closer to developing a combination cell and gene therapy method that will allow us to use patients’ own cells to treat them.”

Using one adult patient at The Johns Hopkins Hospital as their first case, the researchers first isolated the patient’s bone marrow cells. After generating induced pluripotent stem (iPS) cells — adult cells that have been reprogrammed to behave like embryonic stem cells — from the bone marrow cells, they put one normal copy of the hemoglobin gene in place of the defective one using genetic engineering techniques.

The researchers sequenced the DNA from 300 different samples of iPS cells to identify those that contained correct copies of the hemoglobin gene and found four. Three of these iPS cell lines didn’t pass muster in subsequent tests.

“The beauty of iPS cells is that we can grow a lot of them and then coax them into becoming cells of any kind, including red blood cells,” Cheng said.

In their process, his team converted the corrected iPS cells into immature red blood cells by giving them growth factors. Further testing showed that the normal hemoglobin gene was turned on properly in these cells, although at less than half of normal levels. “We think these immature red blood cells still behave like embryonic cells and as a result are unable to turn on high enough levels of the adult hemoglobin gene,” explains Cheng. “We next have to learn how to properly convert these cells into mature red blood cells.”

Only one drug treatment has been approved by the FDA for treatment of SCD, hydroxyurea, whose use was pioneered by George Dover, M.D., the chief of pediatrics at the Johns Hopkins Children’s Center. Outside of bone marrow transplants, frequent blood transfusions and narcotics can control acute episodes.

The research was funded by grants from the Maryland Stem Cell Fund and the National Institutes of Health, and a fellowship from the Siebel Foundation.

Authors on the paper are Jizhong Zou, Xiaosong Huang, Sarah Dowey, Prashant Mali and Cheng, all from The Johns Hopkins University.

Media Contacts:
Vanessa McMains; 410-502-9410; vmcmain1@jhmi.edu
Audrey Huang; 410-614-5105; audrey@jhmi.edu
Maryalice Yakutchik; 443-287-2251; myakutc1@jhmi.edu

Vanessa McMains | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>