Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New coronavirus has many potential hosts, could pass from animals to humans repeatedly

11.12.2012
The SARS epidemic of 2002-2003 was short-lived, but a novel type of human coronavirus that is alarming public health authorities can infect cells from humans and bats alike, a fact that could make the animals a continuing source of infection, according to a study to be published in in mBio®, the online open-access journal of the American Society for Microbiology, on December 11.

The new coronavirus, called hCoV-EMC, is blamed for five deaths and several other cases of severe disease originating in countries in the Middle East. According to the new results, hCoV-EMC uses a different receptor in the human body than the SARS virus, and can infect cells from a wide range of bat species and pigs, indicating there may be little to keep the virus from passing from animals to humans over and over again.

First identified in a patient in Saudi Arabia in June, nine laboratory-confirmed cases of hCoV-EMC infection have now been identified, five of whom have died. Although the virus does not apparently pass from person-to-person very readily, the case fatality rate and the fact that the source of the virus has not been identified have caused concern among global public health authorities. Cases of hCoV-EMC infection are marked by severe pneumonia and often by kidney failure.

"This virus is closely related to the SARS virus, and looking at the clinical picture, it causes the same pattern of disease," says Christian Drosten of the University of Bonn Medical Centre in German, a lead author of the study.

Given the similarities, Drosten and his colleagues wanted to know whether hCoV-EMC and SARS might use the same receptor, a sort of molecular "dock" on human cells that the virus latches onto to gain entry to the cell. The SARS receptor, called ACE2, is found mostly on pneumocytes deep within the human lung, so an individual must breathe in many, many SARS viruses for a sufficient number of them to reach this susceptible area and cause an infection. Drosten says this simple fact helped ensure the SARS outbreak didn't spread like wildfire and was mostly limited to healthcare workers and residents of overcrowded housing in Hong Kong. Also, once a person was infected with SARS in the deep part of their lungs, he or she felt sick almost immediately and therefore was not active in the community and infecting others, another aspect of the receptor that helped curb the outbreak.

Does hCoV-EMC use the same receptor? If so, the means of controlling this new virus might become clearer.

"The answer is a clear no," says Drosten. "This virus does not use ACE2." This leaves open the possiblity that hCoV-EMC could use a receptor in the human lung that is easier to access and could make the virus more infectious than SARS, but it is still not known what receptor the virus does use.

To help identify how hCoV-EMC might have originated and moved between humans and animals, the second part of the study focused on the animal species the virus can infect. SARS is closely related to viruses from bats, but Drosten says the virus changed in the transition from bats to civet cats to humans and could no longer infect bats, so SARS was not present in the wild and did not pass repeatedly from bats to humans like a classical zoonotic disease. "So the [SARS] virus lost its old host and gained a new one," says Drosten.

Like SARS, hCoV-EMC is most closely related to coronaviruses from bats, but unlike SARS, this study found that hCoV-EMC can still infect cells from many different species of bats. "This was a big surprise," says Drosten. "It's completely unusual for any coronavirus to be able to do that – to go back to its original reservoir." The virus is also able to infect cells from pigs, indicating that it uses a receptor structure that all these animals have in common. If that receptor is present in mucosal surfaces, like the lining of the lung, it is possible the virus could pass from animals to humans and back again, making animals an ongoing source of the virus that would be difficult or impossible to eliminate.

Drosten says work on hCoV-EMC will continue in many hospitals and laboratories. His own lab will continue the search for the hCoV-EMC receptor and will work on developing diagnostic tools to help identify cases of infection with the virus.

Drosten says he's also driven to find the animal source of the virus, a crucial piece of information in managing a potential outbreak. The virus can infect bats with host ranges that extend all across Europe and into the Arabian Peninsula.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mBio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

Further reports about: Ace2 Coronavirus SARS SARS outbreak diagnostic tool hCoV-EMC human cell microbiology

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>