Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New coronavirus has many potential hosts, could pass from animals to humans repeatedly

11.12.2012
The SARS epidemic of 2002-2003 was short-lived, but a novel type of human coronavirus that is alarming public health authorities can infect cells from humans and bats alike, a fact that could make the animals a continuing source of infection, according to a study to be published in in mBio®, the online open-access journal of the American Society for Microbiology, on December 11.

The new coronavirus, called hCoV-EMC, is blamed for five deaths and several other cases of severe disease originating in countries in the Middle East. According to the new results, hCoV-EMC uses a different receptor in the human body than the SARS virus, and can infect cells from a wide range of bat species and pigs, indicating there may be little to keep the virus from passing from animals to humans over and over again.

First identified in a patient in Saudi Arabia in June, nine laboratory-confirmed cases of hCoV-EMC infection have now been identified, five of whom have died. Although the virus does not apparently pass from person-to-person very readily, the case fatality rate and the fact that the source of the virus has not been identified have caused concern among global public health authorities. Cases of hCoV-EMC infection are marked by severe pneumonia and often by kidney failure.

"This virus is closely related to the SARS virus, and looking at the clinical picture, it causes the same pattern of disease," says Christian Drosten of the University of Bonn Medical Centre in German, a lead author of the study.

Given the similarities, Drosten and his colleagues wanted to know whether hCoV-EMC and SARS might use the same receptor, a sort of molecular "dock" on human cells that the virus latches onto to gain entry to the cell. The SARS receptor, called ACE2, is found mostly on pneumocytes deep within the human lung, so an individual must breathe in many, many SARS viruses for a sufficient number of them to reach this susceptible area and cause an infection. Drosten says this simple fact helped ensure the SARS outbreak didn't spread like wildfire and was mostly limited to healthcare workers and residents of overcrowded housing in Hong Kong. Also, once a person was infected with SARS in the deep part of their lungs, he or she felt sick almost immediately and therefore was not active in the community and infecting others, another aspect of the receptor that helped curb the outbreak.

Does hCoV-EMC use the same receptor? If so, the means of controlling this new virus might become clearer.

"The answer is a clear no," says Drosten. "This virus does not use ACE2." This leaves open the possiblity that hCoV-EMC could use a receptor in the human lung that is easier to access and could make the virus more infectious than SARS, but it is still not known what receptor the virus does use.

To help identify how hCoV-EMC might have originated and moved between humans and animals, the second part of the study focused on the animal species the virus can infect. SARS is closely related to viruses from bats, but Drosten says the virus changed in the transition from bats to civet cats to humans and could no longer infect bats, so SARS was not present in the wild and did not pass repeatedly from bats to humans like a classical zoonotic disease. "So the [SARS] virus lost its old host and gained a new one," says Drosten.

Like SARS, hCoV-EMC is most closely related to coronaviruses from bats, but unlike SARS, this study found that hCoV-EMC can still infect cells from many different species of bats. "This was a big surprise," says Drosten. "It's completely unusual for any coronavirus to be able to do that – to go back to its original reservoir." The virus is also able to infect cells from pigs, indicating that it uses a receptor structure that all these animals have in common. If that receptor is present in mucosal surfaces, like the lining of the lung, it is possible the virus could pass from animals to humans and back again, making animals an ongoing source of the virus that would be difficult or impossible to eliminate.

Drosten says work on hCoV-EMC will continue in many hospitals and laboratories. His own lab will continue the search for the hCoV-EMC receptor and will work on developing diagnostic tools to help identify cases of infection with the virus.

Drosten says he's also driven to find the animal source of the virus, a crucial piece of information in managing a potential outbreak. The virus can infect bats with host ranges that extend all across Europe and into the Arabian Peninsula.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mBio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

Further reports about: Ace2 Coronavirus SARS SARS outbreak diagnostic tool hCoV-EMC human cell microbiology

More articles from Life Sciences:

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

nachricht Bio-fabrication of Artificial Blood Vessels with Laser Light
28.08.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>