Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corked Microbottles

16.09.2013
Melting corks allow for temperature-controlled release of drugs from microscale vessels

Sustained-release formulations that release drugs over longer periods of time are not the final step in the evolution of “intelligent” drug delivery systems. Modern pharmaceuticals are being designed to be released only in a specific, diseased organ; on cues from our circadian rhythm; or under specific physiological conditions.

In the journal Angewandte Chemie, a team of American and Korean researchers has now introduced “microbottles” with “corks” that release their contents only when the temperature rises above a defined level.

Our circadian rhythms can cause our reaction to a drug to vary with time. Certain conditions and symptoms can also fluctuate with our circadian rhythm. Some pharmaceuticals, such as beta blockers, chemotherapy drugs, and cortisone treatments thus come with recommendations for timing doses. The “intelligent” control drug release based on changing physiological conditions is an extension of these ideas.

Temperature in particular could be a useful regulator for such systems. Our body temperature varies throughout the day and in response to certain physiological states or phases, like disease. An “intelligent” blood pressure reducing drug could be released when body temperature and blood pressure rise due to stress. Inflammation usually causes the temperature of the affected area to rise, so a drug could be directed only to these hot areas. Alternatively, a diseased area of the body, such as a tumor, could be locally warmed to release chemotherapy drugs on the spot, causing fewer side effects.

Previous types of temperature-controlled microcontainers suffered from a slow loading process, low cargo capacity, or premature release of the drug. Younan Xia and a team at the Georgia Institute of Technology, Emory University in Atlanta (USA), and Yonsei University in Seoul (Korea) have now developed a new variety of corked “microbottle” for drugs. The cork melts at a defined temperature and releases the bottle’s contents.

To produce their capsules, the researchers embedded the bottom half of some polystyrene spheres in a thin polymer film and soaked them with a mixture of toluene and water. Because toluene and water do not mix well, the toluene diffused into the spheres. The spheres were then flash-frozen and freeze-dried. The toluene evaporated, exiting trough the tops of the spheres, leaving behind an opening and a cavity. Now the little bottles can quickly and easily be filled.

To cork the bottles, the researchers applied a film of the cork material to a support and pressed it onto the support holding the vessels. Ethanol vapors cause the cork material to flow together around the vessels, hermetically sealing them. By changing the ratio of the materials used in the corks, tetradecanol and lauric acid, the melting points of the corks can be adjusted into a biologically useful range.

About the Author
Dr. Younan Xia is the Brock Family Chair and GRA Eminent Scholar in Nanomedicine at Georgia Institute of Technology and Emory University. His research interests include nanomaterials, biomaterials, drug delivery, controlled release, nanomedicin, regenerative medicine, and catalysis. He recently received a National Award in the Chemistry of Materials from the American Chemical Society.
Author: Younan Xia, Georgia Institute of Technology and Emory University, Atlanta (USA), http://www.chemistry.gatech.edu/people/Xia/Younan
Title: Microscale Polymer Bottles Corked with a Phase-Change Material for Temperature-Controlled Release
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201305006

Copy free of charge. We would appreciate a transcript of your article or a reference to it.

The original article is available from our online pressroom at http://pressroom.angewandte.org.

Younan Xia | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chemistry.gatech.edu/people/Xia/Younan

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>