Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corked Microbottles

16.09.2013
Melting corks allow for temperature-controlled release of drugs from microscale vessels

Sustained-release formulations that release drugs over longer periods of time are not the final step in the evolution of “intelligent” drug delivery systems. Modern pharmaceuticals are being designed to be released only in a specific, diseased organ; on cues from our circadian rhythm; or under specific physiological conditions.

In the journal Angewandte Chemie, a team of American and Korean researchers has now introduced “microbottles” with “corks” that release their contents only when the temperature rises above a defined level.

Our circadian rhythms can cause our reaction to a drug to vary with time. Certain conditions and symptoms can also fluctuate with our circadian rhythm. Some pharmaceuticals, such as beta blockers, chemotherapy drugs, and cortisone treatments thus come with recommendations for timing doses. The “intelligent” control drug release based on changing physiological conditions is an extension of these ideas.

Temperature in particular could be a useful regulator for such systems. Our body temperature varies throughout the day and in response to certain physiological states or phases, like disease. An “intelligent” blood pressure reducing drug could be released when body temperature and blood pressure rise due to stress. Inflammation usually causes the temperature of the affected area to rise, so a drug could be directed only to these hot areas. Alternatively, a diseased area of the body, such as a tumor, could be locally warmed to release chemotherapy drugs on the spot, causing fewer side effects.

Previous types of temperature-controlled microcontainers suffered from a slow loading process, low cargo capacity, or premature release of the drug. Younan Xia and a team at the Georgia Institute of Technology, Emory University in Atlanta (USA), and Yonsei University in Seoul (Korea) have now developed a new variety of corked “microbottle” for drugs. The cork melts at a defined temperature and releases the bottle’s contents.

To produce their capsules, the researchers embedded the bottom half of some polystyrene spheres in a thin polymer film and soaked them with a mixture of toluene and water. Because toluene and water do not mix well, the toluene diffused into the spheres. The spheres were then flash-frozen and freeze-dried. The toluene evaporated, exiting trough the tops of the spheres, leaving behind an opening and a cavity. Now the little bottles can quickly and easily be filled.

To cork the bottles, the researchers applied a film of the cork material to a support and pressed it onto the support holding the vessels. Ethanol vapors cause the cork material to flow together around the vessels, hermetically sealing them. By changing the ratio of the materials used in the corks, tetradecanol and lauric acid, the melting points of the corks can be adjusted into a biologically useful range.

About the Author
Dr. Younan Xia is the Brock Family Chair and GRA Eminent Scholar in Nanomedicine at Georgia Institute of Technology and Emory University. His research interests include nanomaterials, biomaterials, drug delivery, controlled release, nanomedicin, regenerative medicine, and catalysis. He recently received a National Award in the Chemistry of Materials from the American Chemical Society.
Author: Younan Xia, Georgia Institute of Technology and Emory University, Atlanta (USA), http://www.chemistry.gatech.edu/people/Xia/Younan
Title: Microscale Polymer Bottles Corked with a Phase-Change Material for Temperature-Controlled Release
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201305006

Copy free of charge. We would appreciate a transcript of your article or a reference to it.

The original article is available from our online pressroom at http://pressroom.angewandte.org.

Younan Xia | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chemistry.gatech.edu/people/Xia/Younan

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>