Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Core proteins exert control over DNA function

22.06.2016

Rice University-based models simulate how nucleosomes facilitate gene exposure

The protein complex that holds strands of DNA in compact spools partially disassembles itself to help genes reveal themselves to specialized proteins and enzymes for activation, according to Rice University researchers and their colleagues.


Rice University scientists simulated a nucleosome coiled in DNA to discover the interactions that control its unwinding. The DNA double helix binds tightly to proteins (in red, blue, orange and green) that make up the histone core, which exerts control over the exposure (center and right) of genes for binding.

Credit: Wolynes Lab/Rice University

The team's detailed computer models support the idea that DNA unwrapping and core protein unfolding are coupled, and that DNA unwrapping can happen asymmetrically to expose specific genes.

The study of nucleosome disassembly by Rice theoretical biological physicist Peter Wolynes, former Rice postdoctoral researcher Bin Zhang, postdoctoral researcher Weihua Zheng and University of Maryland theoretical chemist Garegin Papoian appears in the Journal of the American Chemical Society. The research is part of a drive by Rice's Center for Theoretical Biological Physics (CTBP) to understand the details of DNA's structure, dynamics and function.

The spools at the center of nucleosomes, the fundamental unit of DNA organization, are histone protein core complexes. Nucleosomes are buried deep within a cell's nucleus. About 147 DNA base pairs (from the more than 3 billion in the human genome) wrap around each histone core 1.7 times. The double helix moves on to spiral around the next core, and the next, with linker sections of 20 to 90 base pairs in between.

The structure helps squeeze a 6-foot-long strand of DNA in each cell into as compact a form as possible while facilitating the controlled exposure of genes along the strand for protein expression.

The spools consist of two pairs of heterodimers, macromolecules that join to form the core. The core is stable until genes along the DNA are called upon by transcription factors or RNA polymerases; the researchers' goal was to simulate what happens as the DNA unwinds from the core, making itself available to bind to outside proteins or make contact with other genes along the strand.

The researchers used their energy landscape models to simulate the nucleosome disassembly mechanism based on the energetic properties of its constituent DNA and proteins. The landscape maps the energies of all the possible forms a protein can take as it folds and functions. Conceptual insights from energy landscape theory have been implemented in an open-source biomolecular modeling framework called AWSEM Molecular Dynamics, which was jointly developed by the Papoian and Wolynes groups.

Wolynes said most studies elsewhere treated the histone core as if it were rigid and irreversibly disassociated when DNA unwrapped. But more recent experimental studies that involved gently pulling strands of DNA or used fluorescent resonance energy transfer, which measures energy moving between two molecules, showed the protein core is flexible and does not completely disassemble during unwrapping.

In their simulations, the researchers found the core changed its shape as the DNA unwound. Without DNA, they found the histone core was completely unstable in physiological conditions.

Their simulations showed that histone tails - the terminal regions of the core proteins - play a crucial role in nucleosome stability. The tails are highly charged and bind tightly with DNA, keeping its genomic content from being exposed until necessary. Their models predicted a faster unwrapping for tail-less nucleosomes, as seen in experiments.

The nucleosome study is part of a larger effort both by Papoian at Maryland and by Wolynes with his colleagues at CTBP to understand the mechanics of DNA, from how it functions to how it reproduces during mitosis. Wolynes said the new study and another new one by his lab on DNA during mitosis represent the opposite ends of the size scale.

"We can understand things at each end of the scale, but there's a no-man's land in between," he said. "We'll have to see whether the phenomena in the present-day no-man's land can be understood. I don't believe in magic; I believe they eventually will."

Wolynes is the D.R. Bullard-Welch Foundation Professor of Science, a professor of chemistry, of biochemistry and cell biology, of physics and astronomy and of materials science and nanoengineering at Rice and a senior investigator of the National Science Foundation (NSF)-funded CTBP. Papoian is the Monroe Martin Professor and chemical physics director at the University of Maryland. Zhang will join the Massachusetts Institute of Technology as an assistant professor in July.

###

The research was supported by the NSF, the CTBP and the National Institute of General Medical Sciences.

The researchers used the NSF-supported DAVinCI supercomputer administered by Rice's Ken Kennedy Institute for Information Technology.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/jacs.6b02893.

This news release can be found online at http://news.rice.edu/2016/06/20/core-proteins-exert-control-over-dna-function/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Wolynes Research Lab: http://wolynes.rice.edu/node/129

Papoian Lab: http://papoian.chem.umd.edu

Associative memory, Water mediated, Structure and Energy Model (AWSEM) protein simulation: http://awsem-md.org

Center for Theoretical Biological Physics: https://ctbp.rice.edu

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!

Further reports about: Biological Physics Core DNA genes mitosis nucleosomes proteins

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>