Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Core mechanism for root growth identified

25.08.2014

During plant growth, dividing cells in meristems must coordinate transitions from division to expansion and differentiation.

Three distinct developmental zones are generated: the meristem, where the cell division takes place, and elongation and differentiation zones. At the same time, plants can rapidly adjust their direction of growth to adapt to environmental conditions.

Root Growth

Cell division in the root meristem is maintained by PLETHORA transcription factors solely transcribed in the stem cells. Outside the stem cells the amount of PLETHORA protein in the cells halves each time the cells divide. In the end there is so little PLETHORA left in the cells that they cannot stay in the dividing mode and start to elongate and differentiate.

Credit: Ari Pekka Mähönen group, Institute of Biotechnology

In Arabidopsis roots, many aspects of zonation are controlled by the plant hormone auxin and auxin-induced PLETHORA transcription factors. Both show a graded distribution with a maximum near the root tip. In addition, auxin is also pivotal for tropic responses of the roots.

Ari Pekka Mähönen with his group in the Institute of Biotechnology, University of Helsinki, Finland, and Dutch colleagues has now found out with the help of experimentation and mathematical modelling how the two factors together regulate root growth.

"Cell division in the meristem is maintained by PLETHORA transcription factors. These proteins are solely transcribed in the stem cells, in a narrow region within the meristematic cells located in the tip of the root. So PLETHORA proteins are most abundant in the stem cells," Ari Pekka Mähönen says.

Outside the stem cells the amount of PLETHORA protein in the cells halves each time the cells divide. In the end there is so little PLETHORA left in the cells that they cannot stay in the dividing mode. This is when the cells start to elongate and differentiate.

Auxin is the factor taking care of many aspects of root growth. If there is enough PLETHORA in the root cells, auxin affects the rate of root cell division. If there is little or no PLETHORA in the cells, auxin regulates cell differentiation and elongation. In addition to this direct, rapid regulation, auxin also regulates cell division, expansion and differentiation indirectly and slowly by promoting PLETHORA transcription. This dual action of auxin keeps the structure and growth of the root very stable.

When PLETHORA levels gradually diminish starting from the root tip upwards, the cell division, elongation and differentiation zones are created. And this inner organisation stays even if the growth direction of the root changes.

"The gravity and other environmental factors can change the auxin content of the cells, and quite rapidly. This all affects the growth direction of the root. And of course it is important for the plant to maintain the organization while directing their roots there where water and nutrients most likely are to be found."

Ari Pekka Mähönen | Eurek Alert!
Further information:
http://www.helsinki.fi

Further reports about: Core Helsinki elongation gravity identified mechanism nutrients proteins root structure

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>