Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corals cozy up with bacterial buddies

09.07.2013
New study shows healthy Red Sea corals carry bacterial communities within

Corals may let certain bacteria get under its skin, according to a new study by researchers at Woods Hole Oceanographic Institution (WHOI) and King Abdullah University of Science and Technology (KAUST) and soon to be published in the journal Applied and Environmental Microbiology.


KAUST-based coral scientist Christian Voolstra gathered samples of the coral species Stylophora pistillata. Earlier sampling methods ground up and mixed together the coral’s surface, tissue, and skeletal layers to obtain genetic information, making it impossible to tell where exactly the genetic information came from. This time, Voolstra and the researchers used a microscopy-based technique and were able to determine that Endozoicomonas lives within the tissue layer. (Photo by Michael Berumen, Woods Hole Oceanographic Institution)

The study offers the first direct evidence that Stylophora pistillata, a species of reef-building coral found throughout the Indian and west Pacific Oceans, harbors bacterial denizens deep within its tissues.

“We have evidence that other species of coral also host these bacteria, and that they may play an important role in keeping a coral healthy,” says Amy Apprill, a WHOI assistant scientist who co-directed the study along with KAUST Assistant Professor Christian Voolstra. KAUST post-doctoral scholar Till Bayer was the lead author of the study.

Researchers have known for decades that most corals don’t like to live alone. Reef-building corals are known to have symbiotic, or mutually beneficial, relationships with single-celled algae. More recent evidence has suggested that bacteria, fungi, and viruses are also part of the mix—especially a group of bacteria called Endozoicomonas, which has been associated with a number of coral species around the world. But scientists haven’t been able to pinpoint where exactly Endozoicomonas lives—in the coral’s tissues or on its surface layer—or what it does there.

Through a research partnership between WHOI and KAUST in Saudi Arabia, Apprill and a diverse team of WHOI and KAUST researchers were able to gain access to the pristine coral reef colonies of the Red Sea. There, they used DNA-based techniques to uncover an abundance of Endozoicomonas genes associated with the coral Stylophora pistillata. The team then created a DNA “probe”—a fragment of DNA designed to fit into the bacterium’s genetic code like a missing puzzle piece—that would light up when it connected with Endozoicomonas genes. Guided by the probe’s fluorescence, the researchers were able to spot Endozoicomonas living deep within the coral’s tissue.

“These weren’t single cells—they were living together in a clump, like a bunch of grapes on a stem,” says Apprill. “That was pretty exciting, because we had not thought about them living like this before.”

Although Endozoicomonas bacteria had previously been linked to coral colonies throughout the world’s oceans, as well as to some species of sponges and sea slugs, this study is the first to directly show the bacteria living within any marine animal. Now, Apprill says, the real mystery is what it’s doing there.

“When we look at healthy corals, we see these really well-established microbial relationships,” says Apprill. Voolstra further adds: “Endozoicomonas make up a good portion of the bacterial biomass which further tells us that they must be doing something important.” Both researchers agree that the next task is to figure out what they’re doing—why the coral lets them in at all—to understand how they benefit the coral.

Apprill suspects the bacteria may help the coral recycle nutrients to stay healthy. She and her colleagues are currently designing new experiments to determine how the coral’s relationship with its bacterial companions works.

“This is not an easy task,” says Apprill, who plans to draw from studies of the human bacterial microbiome to explore the role of the coral’s bacterial communities. Future studies will focus on searching the Endozoicomonas group’s genetic code for bits of DNA that are associated with particular functions in other bacteria, and looking at other coral species to see if the bacteria lives inside them as well.

Understanding the bacteria’s relationship with Stylophora pistillata and other reef-building species could prove critical as corals face a growing number of threats to their health and survival.

“Corals are highly susceptible to the impacts of climate change, coastal development and overfishing,” says Apprill. “In order for scientists to predict the future success of corals, we need to understand their basic biology, including how their microorganisms may aid in keeping them healthy.”

As the team works to shed light on coral’s symbiosis with bacteria, it’s strengthening another mutually beneficial partnership: the multi-year collaboration between WHOI and KAUST, a new world-class, graduate-level scientific research university opened in 2009 along the shores of the Red Sea. Apprill worked closely with a number of KAUST researchers, including marine scientist Christian Voolstra, Syrian-born graduate student Areej Alsheikh-Hussain and WHOI-KAUST joint postdoctoral scholar Matthew Neave, to gather Stylophora pistillata samples, to extract and to analyze the genetic data it contained.

“This study wouldn’t have been possible without this collaboration,” says Apprill. “Working with people from different institutions who think differently from you leads you to think about things in new ways, and in this case to make new discoveries.”

The research was supported by a KAUST-WHOI Special Academic Partnership Fellows award, the WHOI internal funds, and a grant from the National Science Foundation.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

WHOI Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>