Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coral Algae (Symbiodinium) Discovered in Black Corals at Never Seen Before Depths

21.10.2010
Researchers at the Hawai‘i Institute of Marine Biology (HIMB), an organized research unit in the University of Hawai‘i at Manoa’s School of Ocean and Earth Science and Technology have made a remarkable new discovery.

When most people envision coral, they typically think of shallow-water reef-building corals found along beaches and tropical nearshore habitats.

These “typical” corals are dependent upon photosynthetic algae (also known as Symbiodinium or zooxanthellae) found in their tissues to obtain nutrients to live off of. In deeper less known waters, closely related black corals were considered to be void of these algae because of the light shortage to support photosynthesis.

In fact, all black corals were considered to lack Symbiodinium (algae), because they are typically found at great depths where light levels are very low. Black corals are of substantial cultural and economic importance in Hawai‘i. Some species are harvested commercially for the precious coral jewelry industry in deep waters off Maui, and black coral is considered the official gemstone of the State of Hawai‘i.

Even though most people have heard of black coral jewelry, very few ever get to see these corals in their natural environments because of the depths they are found in. As a result of their remote habitats, very little is known about the basic biology of black corals.

Scientists at the Hawai‘i Institute of Marine Biology (HIMB), examined 14 black coral species collected between 10 and 396 m from around Hawai‘i for the presence of algae using molecular and histological (tissue studies) techniques. Surprisingly, 71% of the examined species were found to contain algae, even at depths approaching 400 m. These black corals exhibited very similar traits to those of corals commonly found in shallow-water (use of algae). PhD student, Daniel Wagner at HIMB was the one who led the investigation.

He states: “because black corals are predominantly found in deep and dark environments, most people assumed that they could not harbor these photosynthetic symbiotic algae. At this point we do not know how these algae are able to exist in extreme environments, and it certainly highlights how little we know about deep reefs.”

This is a new and important discovery for coral biology, representing the deepest record of Symbiodinium to date. This research also implies that some members of these algae have extremely diverse habitat preferences and broad environmental ranges. The prestigious Royal Society will be publishing the full research report in their journal, Proceedings of the Royal Society B this month.

For More information on this research contact Daniel Wagner at wagnerda@hawaii.edu or Carlie Wiener at cwiener@hawaii.edu.

Related Websites
Hawaii Institute of Marine Biology – http://hawaii.edu/himb.
Proceedings of the Royal Society B - http:/ /rspb.royalsocietypublishing.org/

Carlie Wiener | EurekAlert!
Further information:
http://www.hawaii.edu
http://www.soest.hawaii.edu/soest_web/2010_news_PDFs/Wagner_Black_Coral.pdf
http://www.soest.hawaii.edu/soest_web/2010_news_PDFs/Wagner_Black_Coral.pdf

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>