Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coral Algae (Symbiodinium) Discovered in Black Corals at Never Seen Before Depths

21.10.2010
Researchers at the Hawai‘i Institute of Marine Biology (HIMB), an organized research unit in the University of Hawai‘i at Manoa’s School of Ocean and Earth Science and Technology have made a remarkable new discovery.

When most people envision coral, they typically think of shallow-water reef-building corals found along beaches and tropical nearshore habitats.

These “typical” corals are dependent upon photosynthetic algae (also known as Symbiodinium or zooxanthellae) found in their tissues to obtain nutrients to live off of. In deeper less known waters, closely related black corals were considered to be void of these algae because of the light shortage to support photosynthesis.

In fact, all black corals were considered to lack Symbiodinium (algae), because they are typically found at great depths where light levels are very low. Black corals are of substantial cultural and economic importance in Hawai‘i. Some species are harvested commercially for the precious coral jewelry industry in deep waters off Maui, and black coral is considered the official gemstone of the State of Hawai‘i.

Even though most people have heard of black coral jewelry, very few ever get to see these corals in their natural environments because of the depths they are found in. As a result of their remote habitats, very little is known about the basic biology of black corals.

Scientists at the Hawai‘i Institute of Marine Biology (HIMB), examined 14 black coral species collected between 10 and 396 m from around Hawai‘i for the presence of algae using molecular and histological (tissue studies) techniques. Surprisingly, 71% of the examined species were found to contain algae, even at depths approaching 400 m. These black corals exhibited very similar traits to those of corals commonly found in shallow-water (use of algae). PhD student, Daniel Wagner at HIMB was the one who led the investigation.

He states: “because black corals are predominantly found in deep and dark environments, most people assumed that they could not harbor these photosynthetic symbiotic algae. At this point we do not know how these algae are able to exist in extreme environments, and it certainly highlights how little we know about deep reefs.”

This is a new and important discovery for coral biology, representing the deepest record of Symbiodinium to date. This research also implies that some members of these algae have extremely diverse habitat preferences and broad environmental ranges. The prestigious Royal Society will be publishing the full research report in their journal, Proceedings of the Royal Society B this month.

For More information on this research contact Daniel Wagner at wagnerda@hawaii.edu or Carlie Wiener at cwiener@hawaii.edu.

Related Websites
Hawaii Institute of Marine Biology – http://hawaii.edu/himb.
Proceedings of the Royal Society B - http:/ /rspb.royalsocietypublishing.org/

Carlie Wiener | EurekAlert!
Further information:
http://www.hawaii.edu
http://www.soest.hawaii.edu/soest_web/2010_news_PDFs/Wagner_Black_Coral.pdf
http://www.soest.hawaii.edu/soest_web/2010_news_PDFs/Wagner_Black_Coral.pdf

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>