Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coral Algae (Symbiodinium) Discovered in Black Corals at Never Seen Before Depths

21.10.2010
Researchers at the Hawai‘i Institute of Marine Biology (HIMB), an organized research unit in the University of Hawai‘i at Manoa’s School of Ocean and Earth Science and Technology have made a remarkable new discovery.

When most people envision coral, they typically think of shallow-water reef-building corals found along beaches and tropical nearshore habitats.

These “typical” corals are dependent upon photosynthetic algae (also known as Symbiodinium or zooxanthellae) found in their tissues to obtain nutrients to live off of. In deeper less known waters, closely related black corals were considered to be void of these algae because of the light shortage to support photosynthesis.

In fact, all black corals were considered to lack Symbiodinium (algae), because they are typically found at great depths where light levels are very low. Black corals are of substantial cultural and economic importance in Hawai‘i. Some species are harvested commercially for the precious coral jewelry industry in deep waters off Maui, and black coral is considered the official gemstone of the State of Hawai‘i.

Even though most people have heard of black coral jewelry, very few ever get to see these corals in their natural environments because of the depths they are found in. As a result of their remote habitats, very little is known about the basic biology of black corals.

Scientists at the Hawai‘i Institute of Marine Biology (HIMB), examined 14 black coral species collected between 10 and 396 m from around Hawai‘i for the presence of algae using molecular and histological (tissue studies) techniques. Surprisingly, 71% of the examined species were found to contain algae, even at depths approaching 400 m. These black corals exhibited very similar traits to those of corals commonly found in shallow-water (use of algae). PhD student, Daniel Wagner at HIMB was the one who led the investigation.

He states: “because black corals are predominantly found in deep and dark environments, most people assumed that they could not harbor these photosynthetic symbiotic algae. At this point we do not know how these algae are able to exist in extreme environments, and it certainly highlights how little we know about deep reefs.”

This is a new and important discovery for coral biology, representing the deepest record of Symbiodinium to date. This research also implies that some members of these algae have extremely diverse habitat preferences and broad environmental ranges. The prestigious Royal Society will be publishing the full research report in their journal, Proceedings of the Royal Society B this month.

For More information on this research contact Daniel Wagner at wagnerda@hawaii.edu or Carlie Wiener at cwiener@hawaii.edu.

Related Websites
Hawaii Institute of Marine Biology – http://hawaii.edu/himb.
Proceedings of the Royal Society B - http:/ /rspb.royalsocietypublishing.org/

Carlie Wiener | EurekAlert!
Further information:
http://www.hawaii.edu
http://www.soest.hawaii.edu/soest_web/2010_news_PDFs/Wagner_Black_Coral.pdf
http://www.soest.hawaii.edu/soest_web/2010_news_PDFs/Wagner_Black_Coral.pdf

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>