Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copying Plant Anatomy Promises New Photovoltaics

01.04.2010
A promising new polymer-based method for creating photovoltaic devices, which convert sunlight into electricity, has been identified by chemists at the University of Massachusetts Amherst. Their new technique should lead to more efficient power production than achievable by the current generation of semiconductors.

The work by Sankaran Thayumanavan and colleagues at UMass Amherst, with others at the University of California-Riverside, is highlighted in the current issue of the Journal of the American Chemical Society (JACS), a premier chemistry journal, for the clever way it mimics nature’s way of harnessing solar energy.

To achieve the breakthrough, Thayumanavan and co-workers took inspiration from plants and experimented with organic molecules to mimic the photosynthetic machinery of plants. Their new paper demonstrates how a photosynthesis-style photovoltaic device can be designed using large, highly branched, non-biological organic molecules called dendrimers, based on plant anatomy. Branches allow the dendrimer to absorb photons from a wide area and funnel this energy to the dendrimer’s core where it is connected to a polymer “wire.” At the core, charge is separated and the electrons travel down the polymer “wire” to an electrode where electricity is produced.

As Thayumanavan explains, “Our method is inspired by an energy-harnessing process that plants use in nature, which evolved over millions of years to be efficient in terms of capturing a lot of energy and transporting it short distances without power loss. In the future, photovoltaic devices may no longer rely on slower, less efficient human-made semiconductors. Our work should lead to lighter, more efficient and sustainable photovoltaics.” Thayumanavan, known to colleagues as “Thai,” is director of the UMass Amherst’s Fueling the Future Center for Chemical Innovation.

He adds, “The hope is that such a bio-inspired design could approach the conversion efficiency that plants achieve naturally.”

The recent JACS article by him and colleagues titled, “Dendritic and linear macromolecular architectures for photovoltaics: A photoinduced charge transfer investigation,” was selected by the journal editors to appear in a special section, “Harnessing Energy for a Sustainable World.” They predict that the research will transform the way engineers design future photovoltaic devices.

The editors add, “Innovation through scientific discovery is a necessary component of much societal advancement. To truly implement sustainable practices, energy must be harnessed more cleanly and stored for efficient distribution and use. This systems-level change sometimes referred to as the New Industrial Revolution, will require novel materials as well as savvy analysis and modeling to ensure success.”

A link to the editorial comments about this research article can be found at:
http://pubs.acs.org/doi/full/10.1021/ja1017738.
"Thai" Thayumanavan
413-545-1313
thai@chem.umass.edu

"Thai" Thayumanavan | Newswise Science News
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>