Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copper Kills Harmful Bacteria, UA Researchers Find

16.07.2012
Copper alloys may make more hygienic cooking surfaces than stainless steel, according to a recent study by Sadhana Ravishankar of the UA department of veterinary science and microbiology. Her lab group discovered that copper alloys have antimicrobial effects against the foodborne pathogen Salmonella enterica.

Each year a tiny, rod-shaped species of bacteria with a fondness for proliferating on human food causes numerous cases of food poisoning around the world, sometimes leading to severe illness and even death.

The culprit, Salmonella enterica, is a leading cause of diarrheal illness worldwide, said Sadhana Ravishankar, an assistant professor in the University of Arizona department of veterinary science and microbiology.
But Ravishankar¹s lab may have discovered a way to reduce the number of food poisoning cases due to Salmonella and possibly other bacteria:

prepare food on surfaces made with materials that contain some amount of the element copper, known as copper alloys.

Ravishankar¹s lab collaborated with Chris Rensing, formerly an associate professor in the UA department of soil, water and environmental sciences and now at Research Triangle Institute International, for the study, which was published recently in the journal Food Microbiology.

³Chris Rensing had already done some research with copper, and he knew that copper surfaces have antimicrobial activity,² said Ravishankar. The International Copper Association donated six samples of copper alloys for the study, including samples of copper mixed with metals such as nickel, iron, chromium, phosphorous and tin that varied in their copper concentration from 60 to 99.9 percent.

Copper is harmful to bacteria because it reacts with oxygen in the atmosphere over time in a process called oxidation, which produces a residue that is toxic to some bacteria. Oxidation is what makes pure copper change in color over time from a rusty gold to a watery green.

³We decided to see the antimicrobial effect of all these copper alloy surfaces on Salmonella,² said Ravishankar. Salmonella was selected as the microbial guinea pig for the study because of its prevalence and the significant harm it causes worldwide because of diarrheal disease.

³Salmonella has caused outbreaks from eating a broad range of different types of foods, including meats and poultry, dairy products, peanut products, ice creams and even chocolate,² said Ravishankar.

She found that because of oxidation, food contact surfaces made of materials containing copper are far less habitable for bacteria than stainless steel, which showed no antimicrobial properties at all.

³Right now, food industries use stainless steel,² said Ravishankar, ³and stainless steel does not seem to have any antimicrobial activity.²

If there are bacteria on a stainless steel surface, she said: ³They will survive for a long time.²

One test by Ravishankar¹s lab manager, Libin Zhu, showed that Salmonella can survive for longer than two weeks on stainless steel surfaces.

By contrast, the bacteria showed significant reductions on copper alloys.
In most cases, Salmonella on steel surfaces dropped in concentration from
10 million cells to 1 million cells, said Zhu. However, on copper alloys, the concentrations of bacteria dropped by a far greater number, to 100 cells or less.

³We tested three copper-resistant strains and one copper-sensitive strain,² said Zhu.

Copper-resistant strains are lineages of bacteria that have been exposed to copper for several generations, long enough for the cells to develop genetic resistance to its antimicrobial effects.

Copper-sensitive strains, by contrast, have never been exposed to copper and are much more susceptible to the toxicity of oxidation.

The researchers placed small samples of each of the Salmonella strains onto the copper alloys, and stored them at different conditions to simulate different types of food processing environments in which the bacteria might exist.

³Salmonella can be a problem in dry foods and wet foods,² Ravishankar said.

Dry foods include products such as peanut butter, almond products and chocolate, while wet foods include vegetables such as tomatoes, lettuce and spinach, milk and other dairy products and anything processed in a wet environment.

Salmonella survived for longer in the simulated wet conditions than in dry conditions, Zhu said.

In addition, ³copper resistant strains under dry conditions only survive for about 15 minutes ­ just about five minutes longer than the sensitive strain.²

In dry conditions, oxidation occurs more quickly because the copper in the surface comes into contact with oxygen in the air.

The researchers further tested how well the bacteria would survive in a nutrient-rich medium versus in a non-nutrient medium.

³The rich medium can protect the cells from the copper,² said Ravishankar.
³We saw survival on the nutrient-rich medium initially, but soon the cells started to die off because of nutrient depletion.²

The researchers also saw that Salmonella cells on alloys with high copper concentrations began to die out much faster than those on surfaces with lower copper concentrations.

For the highest copper concentration Salmonella cells die off in under 30 minutes,² said Zhu. ³But for the other alloys containing lower copper concentrations, the bacteria can survive up to two hours.²

This is still much less than the two weeks survival achieved by Salmonella on stainless steel, leading the researchers to their conclusion: Copper alloys may be more hygienic surfaces for food processing and preparation than stainless steel.

Ravishankar said she would like to do further tests to see if organic materials on a food contact surface, such as crumbs wedged in cracks or leftover protein residues or grease from oils, could change the effectiveness of copper alloys as antimicrobial agents.

³In a food processing environment, there are going to be hard-to-reach areas where you can still have food particles,² said Ravishankar. ³We want to see if the presence of food particles or some kind of organic matter on the copper surfaces changes the efficacy of the copper alloy. Does it become less effective, or is it equally effective?²

Using pure copper is not currently an option, Ravishankar said, due to the high cost of pure copper, and also due to as-yet unresolved concerns that high concentrations of copper residues could potentially have toxic effects on humans as well, if they were ingested.

In the meantime, while using copper alloys as cooking surfaces instead of stainless steel may be slightly more costly, ³it will be worthwhile,² Ravishankar said.

The high antimicrobial potency of copper alloys, she said, has the potential to significantly reduce cases of food poisoning.

Ravishankar¹s study was funded by the International Copper Association, with preliminary research supported by Ravishankar¹s start-up funds from the UA College of Agriculture and Life Sciences.

LINKS:

Research study report: http://www.ncbi.nlm.nih.gov/pubmed/22265316

UA Department of Veterinary Science and Microbiology:
http://microvet.arizona.edu
UA Department of Soil, Water and Environmental Sciences:
http://ag.arizona.edu/swes
CONTACTS:
Researcher Contact:
Sadhana Ravishankar
Department of Veterinary Science and Microbiology The University of Arizona sadhravi@email.arizona.edu

520-621-2355

Media Contact:
Daniel Stolte
University Communications
The University of Arizona
520-954-1964
stolte@email.arizona.edu

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>