Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copper-free click chemistry used in mice

20.01.2010
For the first time, the widely used molecular synthesis technique known as click chemistry has been safely applied to a living organism.

Researchers with Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have crafted a unique copper-free version of click chemistry to create biomolecular probes for in vivo studies of live mice. Conventional click chemistry reactions require a copper catalyst that is toxic to cells and organisms.

“We developed a variant of the click chemistry reactions that possesses comparable kinetics to the conventional copper-catalyzed reactions, only without the requirement of a toxic metal,” says Carolyn Bertozzi, a Berkeley Lab-UC Berkeley chemist who leads this research. “Our latest studies have now established copper-free click chemistry as a bioorthogonal reaction that can be executed in the physiologically relevant context of a mouse.”

Bertozzi and her research group used copper-free click chemistry to label glycans in a variety of mouse tissues including the intestines, heart and liver. Glycans are sugars that are ubiquitous to living organisms and abundant on the surfaces of cells. They are central to the signaling that takes place between cells during development and are also involved in bacterial and viral infections, as well as the immune system’s response to such infections.

“There is great scientific interest in monitoring the dynamics of glycans as they move about within cells and on the cell surface, but the means to tag glycans with imaging probes in living organisms has been lacking,” says Bertozzi, who is the director of Berkeley Lab’s Molecular Foundry, a faculty scientist with Berkeley Lab’s Materials Sciences and Physical Biosciences Divisions, and the T.Z. and Irmgard Chu Distinguished Professor of Chemistry as well as a professor of Molecular and Cell Biology at UC Berkeley. She is also an investigator with the Howard Hughes Medical Institute (HHMI).

For the past decade, Bertozzi, a leading authority on glycobiology, has worked with various collaborators to devise means by which glycans can be used for molecular imaging in living cells and organisms.

“Molecular imaging reveals a wealth of information about biomolecules in their native environments and glycans are appealing targets for molecular imaging,” she says. “A major focus of my research has been the development of chemical approaches for probing the functions of glycans in cell-based systems, and the application of these tools to studies of glycobiology.”

Two years ago, Bertozzi and her research group developed the first copper-free variant of the click chemistry reactions, which they used to probe glycan dynamics in living cells and in live zebrafish embryos. Now they have applied copper-free click chemistry to the laboratory mouse, which is widely regarded as the model organism for studying human pathology.

The results of this latest development have been published in the Proceedings of the National Academy of Sciences (PNAS) in a paper titled, “Copper-free click chemistry in living animals.” Co-authoring the paper with Bertozzi were Pamela Chang, Jennifer Prescher, Ellen Sletten, Jeremy Baskin, Isaac Miller, Nicholas Agard and Anderson Lo.

Chemistry with a Click

Click chemistry is best known for a copper-catalyzed azide-alkyne reaction that makes it possible for certain chemical building blocks to “click” together in an irreversible linkage, analagous to the snapping together of Lego blocks. Since its introduction in 2001 by the Nobel laureate chemist Barry Sharpless of the Scripps Research Institute, the copper-catalyzed azide-alkyne reaction has proven extremely valuable for attaching small molecular probes to various biomolecules in a test tube or on fixed cells. However, it can’t be used for biomolecule labeling in live cells or organisms because of copper’s toxicity.

Earlier work by Bertozzi and her group had shown that glycans can be metabolically labeled with azides – a functional group featuring three nitrogen atoms – via a reaction they devised, which they called the Staudinger ligation. To apply click chemistry to glycans, she and her colleagues designed a ring-shaped molecule, called difluorinated cyclooctyne or DIFO, that reacts with azides rapidly at physiological temperatures without the need for a toxic catalyst.

“This copper-free click reaction of azides and DIFO combines the biocompatibility of the Staudinger ligation with the fast reaction kinetics of click chemistry,” Bertozzi says.

To apply their copper-free click chemistry to living mice, Bertozzi and her group delivered azides to the surfaces of target cells within the mice via a metabolic precursor, then labeled select glycans(those that bore corresponding azido sialic acids) by covalent reaction in vivo with a panel of cyclooctyne-FLAG peptide conjugates. The labeled biomolecules were probed by ex vivo analysis of cells and tissue lysates.

“The relative amounts of ligation products observed with different cyclooctynes suggest that both intrinsic reaction kinetics and other properties such as solubility and tissue access govern the efficiency of copper-free click chemistry,” Bertozzi says. “More broadly, copper-free click chemistry appears to possess the requisite bioorthogonality to achieve specific biomolecule labeling in this important model organism.”

This research was primarily supported by a grant from the National Institutes of Health.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE’s Office of Science and is managed by the University of California. Visit our Website at www.lbl.gov/

Additional Information

The paper “Copper-free click chemistry in living animals” is on the PNAS Wesbite at

http://www.pnas.org/content/early/2010/01/07/0911116107.full.pdf+html

For more about the research of Carolyn Bertozzi, visit her Website at www.cchem.berkeley.edu/crbgrp/

For more about Berkeley Lab’s Molecular Foundry visit the Website at http://foundry.lbl.gov

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>