Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooperative agreement - start for further development of eco-friendly seed treatment using electrons

29.11.2011
Cooperative agreement marks the start for further development of eco-friendly seed treatment using electrons

A cooperative agreement was signed on November 24th, by the directors of Getreide AG and BayWa AG, the managing director of Röber Institut GmbH, and the director of the Fraunhofer Institute for Electron Beam and Plasma Technology FEP in Dresden for a further joint development of seed treatment processes using low energy electrons.

This group of seed treatment companies, a plant manufacturer, and a research institute aims to advance the eco-friendly process to a new level and to establish it in the commercial marketplace.

Seed treatment using electrons has been used on a large scale for many years by BayWa AG and Getreide AG.

In the last years, more than 200,000 hectares of cereal crops are cultivated in Germany using electron-treated seed.

This year Getreide AG and BayWa AG acquired the Wesenitz pilot plant. These companies are the first licensees of the process developed by the Fraunhofer FEP. In collaboration with Röber Institut GmbH, the plant manufacturer, the aim is to adapt the technology further to the requirements of the marketplace. The extensive practical experience gained over recent years will be advantageous here.

The new developments aim to make the plant more versatile regarding its size and throughput. In addition, the aim is also to adapt the process for other agricultural crops and vegetable seed.

Seed treatment with electrons is an effective and reliable method for freeing seeds of seed-borne pathogens (fungi, bacteria, viruses).

Using a special equipment the electrons only act on the surface and inside the seed coat.

The ability of the seeds to germinate is thus not impaired and is at least equivalent to the ability of chemically dressed seeds to germinate.

The physical process, which has been recommended many times for organic farming, has a number of advantages for both users and the environment: Excess seed can be used as animal feed, harmful organisms cannot develop any resistance to this process, and no chemical agents are employed. Furthermore, the avoidance of dust from dressing processes, the improved flow properties of the seed, and the faster field emergence are deemed to be positive by users.

Scientific contact:
Frank-Holm Rögner
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-242
frank-holm.roegner@fep.fraunhofer.de
Press contact:
Annett Arnold
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de/
http://www.fep.fraunhofer.de/en/press_and_media.html

More articles from Life Sciences:

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>