Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Convergent Evolution in Lignin Biosynthesis: Tools for Re-Engineering Biomass Composition

Lessons in lignin synthesis from the lycophyte Selaginella

Lignin is the double-edged sword of biofuels: if you are making cellulosic ethanol, you want less lignin because it blocks the breakdown of cellulose. If you are using pyrolytic methods, you want more lignin because lignin contains more energy than cellulose.

Whether you wish to maximize or minimize lignin content, an understanding of lignin synthesis is essential and has proved elusive. Lignin is a key adaptation to life on land, as it strengthens plant cell walls thereby helping land plants stand upright and reinforcing the cell walls of the specialized water-conducting tubes that are another key adaptation to growth in terrestrial environments.

The lignin polymer is made up of a complex arrangement of subunits and its subunit composition differs among different species. For example, ferns and conifers have lignin composed mainly of p-hydroxyphenyl (H) and guaiacyl (G) lignin units. Flowering plants have H and G subunits, plus syringyl (S) subunits derived from sinapyl alcohol. Interestingly, S lignin is also found in some lycophytes, including the spikemoss Selaginella (photo). In research published this week in The Plant Cell, a team of researchers led by Clint Chapple of Purdue University showed that lignin synthesis proceeds along a different path in Selaginella. Their work centers on the characterization of the enzyme ferulate 5-hydroxylase (F5H); in flowering plants, this enzyme produces S lignin units from G lignin precursors. By comparing the Selaginella enzyme (Sm F5H) to the F5H from the model flowering plant Arabidopsis thaliana (At F5H), the authors found that Sm F5H could both catalyze the same reaction as At F5H and could also catalyze an additional reaction, acting on precursors of H lignin to form precursors to G and S lignin, and thereby bypassing four steps in angiosperm lignin synthesis. Indeed, transgenic expression of Sm F5H can restore normal lignin deposition to Arabidopsis plants with mutations in other enzymes of lignin biosynthesis. Interestingly, some combinations of transgenic Sm F5H and Arabidopsis lignin mutations produce lignin compositions likely not seen in nature, indicating that manipulation of this pathway can be used to engineer lignin composition. Moreover, since different lignin subunit compositions produce different lignin structural properties, this engineering may affect biomass characteristics such as digestibility. Author Clinton Chapple notes “It is exciting to realize that the study of plants so distantly related to crops can provide us with new tools to engineer plants that are of benefit to humans.”

This research also provides interesting insights on convergent evolution, the process whereby different evolutionary lineages arrive at similar adaptations, such as the independent evolution of wings for flight in bats and birds. Selaginella is part of one of the oldest divisions of vascular plants, resulting from an ancient split between the lycophytes and euphyllophytes (which include all modern seed plants). Similar to bat wings and bird wings, the synthesis of S lignin appears to have arisen independently in flowering plants and in lycophytes. Thus, this research provides both an interesting window on convergent evolution in plants and a potentially useful tool for engineering lignin synthesis.

This research was supported by the National Science Foundation, the U.S. Department of Energy office of Science, and the Life Sciences Research Foundation.

Jennifer Mach | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>