Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling Protein Function With Nanotechnology

23.02.2012
A new study led by nanotechnology and biotechnology experts at Rensselaer Polytechnic Institute is providing important details on how proteins in our bodies interact with nanomaterials.
In their new study, published in the Feb. 2 online edition of the journal Nano Letters, the researchers developed a new tool to determine the orientation of proteins on different nanostructures. The discovery is a key step in the effort to control the orientation, structure, and function of proteins in the body using nanomaterials.

“To date, very little is known about how proteins interact with a surface at the nanoscale,” said Jonathan Dordick, director of the Center for Biotechnology and Interdisciplinary Studies at Rensselaer (CBIS), the Howard P. Isermann ’42 Professor of Chemical and Biological Engineering, and co-corresponding author of the study. “With a better understanding of how a protein interacts with a surface, we can develop custom nanoscale surfaces and design proteins that can do a variety of amazing tasks in the human body.”

Researchers seek to use nanotechnology in a variety of biological and medical applications, ranging from biosensors that can detect cancer in the body to scaffolds that help grow new tissues and organs, according to the researchers. Such technologies involve the interaction between biological cells and non-biological nanoscale materials. These interactions are controlled in part by proteins at the interface between the two materials. At such a minuscule level, the tiniest change in the structure of a material can vastly change the proteins involved and thus alter how the cells of the human body respond to the nanomaterial. In fact, proteins are among the most complex (and fickle) molecules in our bodies, rapidly changing their orientation or structure and thus their ability to interact with other molecules. Controlling their orientation and structure through their interactions with nanomaterials is essential to their reliable and safe use in new biotechnologies, according to Dordick.

“We have learned over the past decade to create nanomaterials with a wide variety of controlled structures, and we have discovered and begun to learn how these structures can positively impact cellular activity,” said Richard Siegel, the Robert W. Hunt Professor of Materials Science and Engineering at Rensselaer, director of the Rensselaer Nanotechnology Center, and co-corresponding author on the study. “By learning more about the role of the nanostructure-protein interactions that cause this impact, we will be able in the future to harness this knowledge to benefit society through improved healthcare. In addition to improved healthcare, this work will also help enable the manufacture of a wide range of new hierarchical composite materials—based upon synthetic polymers, biomolecules, and nanostructures—that will revolutionize our ability to solve many critical problems facing society worldwide.”

What the researchers found in this and their previous studies was that the size and curvature of the nanosurface greatly changed the way proteins oriented themselves on the surfaces and changed their structure, and this influenced protein stability. They found that nanostructures with smaller and more curved surfaces favored protein orientations that resulted in more stable proteins than structures with larger more flat surfaces.

To reach these conclusions, the researchers investigated several well-studied proteins, including cytochrome c, RNase A, and lysozyme and monitored their adsorption on different size silica nanoparticles. In this latest work, they chemically modified the adsorbed proteins to form chemical “tags” that provided the researchers with important information on how the proteins adsorbed on different silica surfaces. When the nanomaterials and proteins were studied using mass spectrometry, the tags provided valuable new information about the surface orientation of the proteins. Mass spectrometry analyzes the mass distribution of a material to determine its elemental composition and structural characteristics, and was very sensitive to the chemical tags added on the proteins.

Dordick and Siegel were joined in the research by Siddhartha Shrivastava and Joseph Nuffer of Rensselaer. The research was funded by the National Science Foundation. The paper is titled “Position-specific chemical modification and quantitative proteomics disclose protein orientation absorbed on silica nanoparticles.”

More information on Dordick’s research can be found at http://enzymes.che.rpi.edu/. Additional information on Siegel’s research can be found at http://www.rpi.edu/dept/nsec/.

Front and back face of Cytochrome C

Published February 22, 2012

Contact: Gabrielle DeMarco
Phone: (518) 276-6542
E-mail: demarg@rpi.edu

Gabrielle DeMarco | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>