Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling Brain Waves to Improve Vision

25.04.2014

Researchers at the Beckman Institute are using a novel technique to test brain waves to see how the brain processes external stimuli that do and don’t reach our awareness.

Have you ever accidently missed a red light or a stop sign? Or have you  heard someone mention a visible event that you passed by but totally missed seeing?

“When we have different things competing for our attention, we can only be aware of so much of what we see,” said Kyle Mathewson, Beckman Institute Postdoctoral Fellow. “For example, when you’re driving, you might really be concentrating on obeying traffic signals.”

But say there’s an unexpected event: an emergency vehicle, a pedestrian, or an animal running into the road—will you actually see the unexpected, or will you be so focused on your initial task that you don’t notice?

“In the car, we may see something so brief or so faint, while we’re paying attention to something else, that the event won’t come into our awareness,” says Mathewson. “If you present this scenario hundreds of times to someone, sometimes they will see the unexpected event, and sometimes they won’t because their brain is in a different preparation state.”

By using a novel technique to test brain waves, Mathewson and colleagues are discovering how the brain processes external stimuli that do and don’t reach our awareness. A paper about their results, “Dynamics of Alpha Control: Preparatory Suppression of Posterior Alpha Oscillations by Frontal Modulators Revealed with Combined EEG and Event-related Optical Signal,” published this month in the Journal of Cognitive Neuroscience, reveals how alpha waves, typically thought of as your brain’s electrical activity while it’s at rest, can actually influence what we see or don't see.

The researchers used both electroencephalography (EEG) and the event-related optical signal (EROS), developed in the Cognitive Neuroimaging Laboratory of Gabriele Gratton and Monica Fabiani, professors of psychology and members of the Beckman Institute’s Cognitive Neuroscience Group, and authors of the study.

While EEG records the electrical activity along the scalp, EROS uses infrared light passed through optical fibers to measure changes in optical properties in the active areas of the cerebral cortex. Because of the hard skull between the EEG sensors and the brain, it can be difficult to find exactly WHERE signals are produced. EROS, which examines how light is scattered, can noninvasively pinpoint activity within the brain.

“EROS is based on near-infrared light,” explained Fabiani and Gratton via email. “It exploits the fact that when neurons are active, they swell a little, becoming slightly more transparent to light: this allows us to determine when a particular part of the cortex is processing information, as well as where the activity occurs.”

This allowed the researchers to not only measure activity in the brain, but also allowed them to map where the alpha oscillations were originating. Their discovery: the alpha waves are produced in the cuneus, located in the part of the brain that processes visual information.

The alpha can inhibit what is processed visually, making it hard for you to see something unexpected.

By focusing your attention and concentrating more fully on what you are experiencing, however, the executive function of the brain can come into play and provide “top-down” control—putting a brake on the alpha waves, thus allowing you to see things that you might have missed in a more relaxed state.

“We found that the same brain regions known to control our attention are involved in suppressing the alpha waves and improving our ability to detect hard-to-see targets,” said Diane Beck, a member of the Beckman's Cognitive Neuroscience Group, and one of the study’s authors.

“Knowing where the waves originate means we can target that area specifically with electrical stimulation” said Mathewson. “Or we can also give people moment-to-moment feedback, which could be used to alert drivers that they are not paying attention and should increase their focus on the road ahead, or in other situations alert students in a classroom that they need to focus more, or athletes, or pilots and equipment operators.”

The study examined 16 subjects and mapped the electrical and optical data onto individual MRI brain images.

Other researchers on the study include Ed Maclin and Kathy Low, from the Cognitive Neuroimaging Lab, and Tony Ro, from the City College of the City University of New York. Funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Beckman Institute, and the National Institute of Mental Health (NIMH).

Maeve Reilly | Eurek Alert!
Further information:
http://beckman.illinois.edu/news/2014/04/brain-waves-improve-vision

Further reports about: Brain EEG EROS MRI Neuroimaging Neuroscience activity athletes initial signals waves

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>