Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling Brain Waves to Improve Vision

25.04.2014

Researchers at the Beckman Institute are using a novel technique to test brain waves to see how the brain processes external stimuli that do and don’t reach our awareness.

Have you ever accidently missed a red light or a stop sign? Or have you  heard someone mention a visible event that you passed by but totally missed seeing?

“When we have different things competing for our attention, we can only be aware of so much of what we see,” said Kyle Mathewson, Beckman Institute Postdoctoral Fellow. “For example, when you’re driving, you might really be concentrating on obeying traffic signals.”

But say there’s an unexpected event: an emergency vehicle, a pedestrian, or an animal running into the road—will you actually see the unexpected, or will you be so focused on your initial task that you don’t notice?

“In the car, we may see something so brief or so faint, while we’re paying attention to something else, that the event won’t come into our awareness,” says Mathewson. “If you present this scenario hundreds of times to someone, sometimes they will see the unexpected event, and sometimes they won’t because their brain is in a different preparation state.”

By using a novel technique to test brain waves, Mathewson and colleagues are discovering how the brain processes external stimuli that do and don’t reach our awareness. A paper about their results, “Dynamics of Alpha Control: Preparatory Suppression of Posterior Alpha Oscillations by Frontal Modulators Revealed with Combined EEG and Event-related Optical Signal,” published this month in the Journal of Cognitive Neuroscience, reveals how alpha waves, typically thought of as your brain’s electrical activity while it’s at rest, can actually influence what we see or don't see.

The researchers used both electroencephalography (EEG) and the event-related optical signal (EROS), developed in the Cognitive Neuroimaging Laboratory of Gabriele Gratton and Monica Fabiani, professors of psychology and members of the Beckman Institute’s Cognitive Neuroscience Group, and authors of the study.

While EEG records the electrical activity along the scalp, EROS uses infrared light passed through optical fibers to measure changes in optical properties in the active areas of the cerebral cortex. Because of the hard skull between the EEG sensors and the brain, it can be difficult to find exactly WHERE signals are produced. EROS, which examines how light is scattered, can noninvasively pinpoint activity within the brain.

“EROS is based on near-infrared light,” explained Fabiani and Gratton via email. “It exploits the fact that when neurons are active, they swell a little, becoming slightly more transparent to light: this allows us to determine when a particular part of the cortex is processing information, as well as where the activity occurs.”

This allowed the researchers to not only measure activity in the brain, but also allowed them to map where the alpha oscillations were originating. Their discovery: the alpha waves are produced in the cuneus, located in the part of the brain that processes visual information.

The alpha can inhibit what is processed visually, making it hard for you to see something unexpected.

By focusing your attention and concentrating more fully on what you are experiencing, however, the executive function of the brain can come into play and provide “top-down” control—putting a brake on the alpha waves, thus allowing you to see things that you might have missed in a more relaxed state.

“We found that the same brain regions known to control our attention are involved in suppressing the alpha waves and improving our ability to detect hard-to-see targets,” said Diane Beck, a member of the Beckman's Cognitive Neuroscience Group, and one of the study’s authors.

“Knowing where the waves originate means we can target that area specifically with electrical stimulation” said Mathewson. “Or we can also give people moment-to-moment feedback, which could be used to alert drivers that they are not paying attention and should increase their focus on the road ahead, or in other situations alert students in a classroom that they need to focus more, or athletes, or pilots and equipment operators.”

The study examined 16 subjects and mapped the electrical and optical data onto individual MRI brain images.

Other researchers on the study include Ed Maclin and Kathy Low, from the Cognitive Neuroimaging Lab, and Tony Ro, from the City College of the City University of New York. Funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Beckman Institute, and the National Institute of Mental Health (NIMH).

Maeve Reilly | Eurek Alert!
Further information:
http://beckman.illinois.edu/news/2014/04/brain-waves-improve-vision

Further reports about: Brain EEG EROS MRI Neuroimaging Neuroscience activity athletes initial signals waves

More articles from Life Sciences:

nachricht From rigid to flexible
29.08.2016 | Technische Universität Dresden

nachricht Moth takes advantage of defensive compounds in Physalis fruits
26.08.2016 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

3-D-printed structures 'remember' their shapes

29.08.2016 | Materials Sciences

From rigid to flexible

29.08.2016 | Life Sciences

Sensor systems identify senior citizens at risk of falling within 3 weeks

29.08.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>