Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Control gene for 'conveyor belt' cells could help improve oral vaccines, treat intestinal disease

Scientists have found a master regulator gene needed for the development of M cells, a mysterious type of intestinal cell involved in initiating immune responses.

M cells act like "conveyor belts," ingesting bacteria and transporting substances from the gut into Peyer's patches, specialized tissues resembling lymph nodes in the intestines. Better knowledge of M cells' properties could aid research on oral vaccines and inflammatory bowel diseases.

A team of researchers at Emory University School of Medicine and RIKEN Research Center for Allergy and Immunology in Japan has identified the gene Spi-B as responsible for the differentiation of M cells.

The results are published Sunday, June 17 in the journal Nature Immunology.

"This discovery could really unlock a lot of information about the sequence of events needed for M cells to develop and what makes them distinctive," says co-author Ifor Williams, MD, PhD, associate professor of pathology and laboratory medicine at Emory University School of Medicine. "M cells have been difficult to study because they are relatively rare, they are only found within the Peyer's patches and can't be grown in isolation."

Scientists at RIKEN, led by senior author Hiroshi Ohno, MD, PhD, teamed up with Williams' laboratory, taking advantage of a discovery by Williams that a protein called RANKL, which is produced by cells in Peyer's patches, can induce M cell differentiation. Research scientist Takashi Kanaya is first author of the paper.

Kanaya and colleagues found that the gene Spi-B is turned on strongly at early stages of M cell differentiation induced by RANKL. Their suspicion of Spi-B's critical role was confirmed when they discovered that mice lacking Spi-B do not have functional M cells, and the cells in the intestines lack several other markers usually found on M cells.

"It was somewhat surprising to find Spi-B expressed in intestinal epithelial cells," Williams says. "Because Spi-B is known to be important for the development of some types of immune cells, it was thought to be expressed only in bone marrow-derived cells."

In fact, the M cells in Spi-B deficient mice can't be restored by a transplant of normal bone marrow, the researchers found. That means Spi-B has to be active in intestinal epithelial cells (not immune cells) for M cells to develop.

Williams says information about M cells – in particular, what molecules they have on their surfaces – could be useful for targeting oral vaccines. Most vaccines in use today are administered by injection. But immunologists believe that in some cases, it may be better to deliver vaccines through the mouth or nose, thus strengthening the body's defenses where an infection starts.

Because M cells are involved in the uptake of bacteria, the study of M cells could also guide development of treatments for inflammatory bowel diseases, in which immune responses to intestinal bacteria appear to become dysregulated.

The research at RIKEN was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Japan Society for the Promotion of Science, the Japan Science and Technology Agency, the Japan Science Society, the Takeda Science Foundation, the Mitsubishi Foundation and the Uehara Memorial Foundation.

The research in Williams' lab is supported by the National Institute of Diabetes and Digestive and Kidney Diseases (5R01DK064730-07) and the Bill & Melinda Gates Foundation.


T. Kanaya et al. The Ets Transcription Factor Spi-B Is Essential for the Differentiation of Intestinal Microfold (M) Cells. Nat. Immunol. (2012) doi:10.1038/ni.2352

The Robert W. Woodruff Health Sciences Center ( of Emory University is an academic health science and service center focusing on teaching, research, health care and public service.

Quinn Eastman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>