Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Control gene for 'conveyor belt' cells could help improve oral vaccines, treat intestinal disease

18.06.2012
Scientists have found a master regulator gene needed for the development of M cells, a mysterious type of intestinal cell involved in initiating immune responses.

M cells act like "conveyor belts," ingesting bacteria and transporting substances from the gut into Peyer's patches, specialized tissues resembling lymph nodes in the intestines. Better knowledge of M cells' properties could aid research on oral vaccines and inflammatory bowel diseases.

A team of researchers at Emory University School of Medicine and RIKEN Research Center for Allergy and Immunology in Japan has identified the gene Spi-B as responsible for the differentiation of M cells.

The results are published Sunday, June 17 in the journal Nature Immunology.

"This discovery could really unlock a lot of information about the sequence of events needed for M cells to develop and what makes them distinctive," says co-author Ifor Williams, MD, PhD, associate professor of pathology and laboratory medicine at Emory University School of Medicine. "M cells have been difficult to study because they are relatively rare, they are only found within the Peyer's patches and can't be grown in isolation."

Scientists at RIKEN, led by senior author Hiroshi Ohno, MD, PhD, teamed up with Williams' laboratory, taking advantage of a discovery by Williams that a protein called RANKL, which is produced by cells in Peyer's patches, can induce M cell differentiation. Research scientist Takashi Kanaya is first author of the paper.

Kanaya and colleagues found that the gene Spi-B is turned on strongly at early stages of M cell differentiation induced by RANKL. Their suspicion of Spi-B's critical role was confirmed when they discovered that mice lacking Spi-B do not have functional M cells, and the cells in the intestines lack several other markers usually found on M cells.

"It was somewhat surprising to find Spi-B expressed in intestinal epithelial cells," Williams says. "Because Spi-B is known to be important for the development of some types of immune cells, it was thought to be expressed only in bone marrow-derived cells."

In fact, the M cells in Spi-B deficient mice can't be restored by a transplant of normal bone marrow, the researchers found. That means Spi-B has to be active in intestinal epithelial cells (not immune cells) for M cells to develop.

Williams says information about M cells – in particular, what molecules they have on their surfaces – could be useful for targeting oral vaccines. Most vaccines in use today are administered by injection. But immunologists believe that in some cases, it may be better to deliver vaccines through the mouth or nose, thus strengthening the body's defenses where an infection starts.

Because M cells are involved in the uptake of bacteria, the study of M cells could also guide development of treatments for inflammatory bowel diseases, in which immune responses to intestinal bacteria appear to become dysregulated.

The research at RIKEN was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Japan Society for the Promotion of Science, the Japan Science and Technology Agency, the Japan Science Society, the Takeda Science Foundation, the Mitsubishi Foundation and the Uehara Memorial Foundation.

The research in Williams' lab is supported by the National Institute of Diabetes and Digestive and Kidney Diseases (5R01DK064730-07) and the Bill & Melinda Gates Foundation.

Reference:

T. Kanaya et al. The Ets Transcription Factor Spi-B Is Essential for the Differentiation of Intestinal Microfold (M) Cells. Nat. Immunol. (2012) doi:10.1038/ni.2352

The Robert W. Woodruff Health Sciences Center (http://www.whsc.emory.edu/home/about) of Emory University is an academic health science and service center focusing on teaching, research, health care and public service.

Quinn Eastman | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>