Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Control of fear in the brain decoded

06.09.2011
Emotional balance is regulated by molecular factors behind stress response. When healthy people are faced with threatening situations, they react with a suitable behavioural response and do not descend into a state of either panic or indifference, as is the case, for example, with patients who suffer from anxiety.

With the help of genetic studies on mice, scientists from the Max Planck Institute of Psychiatry have discovered two opposing neuronal regulatory circuits for the generation and elimination of fear. Both are controlled by the stress-inducing messenger substance corticotropin-releasing hormone (CRH) and its type 1 receptor (CRHR1).

The availability of these factors in neurons that release glutamate in brain areas of the limbic system activates a neuronal network which causes anxiety behaviour. Conversely, in dopamine-releasing neurons in the mid-brain, these factors give rise to behaviour that reduces fear. Because disorders of the stress factors may be observed in many patients with affective illnesses, the scientists suspect that the pathological alteration of the CRHR1-dependent regulatory circuits may be at the root of such emotional maladies.

An organism’s response to stress is one of the key strategies essential to its survival in dealing with environmental factors. A balanced emotional reaction is of particular importance here and is subject to a highly complex molecular regulation system. Corticotropin-releasing hormone (CRH), which is released in the brain and places the organism in a state of alert, is a central molecular factor of the stress response. In addition to its effect as a hormonal messenger substance, it also controls the activity of neurons through binding to its receptors.

Many patients with anxiety disorders and depression display an altered hormonal stress response and have increased volumes of CRH in the brain. To investigate the underlying pathological processes, the research team working with Jan Deussing at the Max Planck Institute of Psychiatry carried out studies on the mouse model system. This enabled them to selectively deactivate an important factor, for example the CRH type 1 receptor, in certain cells, and thus establish the locations where the receptor is normally active and identify its function.

Using immunohistochemical methods and a series of transgenic mouse lines, the researchers succeeded in mapping the gene activity of the type 1 CRH receptor in the mouse brain in detail for the first time. Interestingly, a specific activity pattern emerged in different neuron groups which release different neuronal messenger substances. In regions of the forebrain (cortex, hippocampus, thalamus, septum), CRHR1 is detectable in glutamatergic and GABAergic neurons. As the limbic system, these regions are linked and, as the current study shows, trigger fear-inducing behaviour in glutamatergic neurons.

In regions of the midbrain (substantia nigra, ventral tegmental area), CRHR1 arises in dopamine-releasing neurons. The functional examination of the mice gave rise to the fairly sensational discovery that the stress hormone CRH actually reduces fear through its receptors in this part of the brain. These neurons demonstrably trigger the direct release of dopamine in regions of the forebrain and hence cause behaviour that overcomes fear.

The opposing effects of the fear-generating and fear-eliminating effect of the CRH/CRHR1 was demonstrated for the first time by this study and prompted the re-evaluation of the use of CRH-receptor antagonists as anxiolytic and antidepressant drugs. The authors speculate that the over-activity of the CRH system in patients with mood disorders is not general but probably limited to certain regulatory circuits in the brain, thus causing imbalanced emotional behaviour. “The use of CRH-receptor 1 antagonists could be particularly useful in patients in who one of these systems is out of sync,” says research group leader Jan Deussing.

Dr. Barbara Meyer | alfa
Further information:
http://www.mpg.de/4412596/Decoding_fear

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>