Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The contribution of coding variants to psoriasis much smaller than thought

11.11.2013
The latest study was published online in Nature Genetics

Coding variants in immune disease-related genes play only a small part in the overall genetic risk for psoriasis, according to a new study led by Anhui Medical University and BGI.

This conclusion is strongly supported by their investigation on the contribution of functional coding variants to psoriasis in 21,309 Chinese individuals. In such a large-scale investigation, researchers only discovered two independent low-frequency variants with moderate effect on disease risk. The latest study was published online in Nature Genetics.

Psoriasis is a complex, chronic, lifelong skin disease. It typically first strikes people between the ages of 15 to 35, but can affect anyone at any age, including children. This terrible disease is the results of the interaction of multiple factors, such as environment, genetics, and immunology.

The rapid and cost-effective sequencing technologies have enabled researchers to dig out numerous risk-associated variants in psoriasis, but the functional coding variants, particularly low-frequency and rare variants, have not been systematically investigated.

In this study, researchers took two-phase to identify coding variants. In the discovery stage, they conducted exome sequencing on 781 patients with psoriasis and 676 people without psoriasis as control. The efforts yielded 518,308 single-nucleotide variants (SNVs). Of these variants, 20.62% were nonsynonymous, and 68.13% were rare.

Considering the limitation of sample size and techniques in the discovery stage, researchers performed 2 independent studies in a large sample of 9,946 patients with psoriasis and 9,906 controls using targeted sequencing. A total of 3.2 Mb of coding DNA surrounding the targeted regions of 1,326 genes (covering 133 SNVs, 622 immune disease–related genes, and some top genes) was captured. They totally identified 82,387 nonsynonymous SNVs, of which 97.07% were rare.

Through further analysis, they discovered two independent missense SNVs in IL23R and GJB2 with low frequency and five common missense SNVs in LCE3D, ERAP1, CARD14 and ZNF816A associated with psoriasis at genome-wide significance. The rare missense SNVs in FUT2 and TARBP1 were also observed with suggestive evidence of association with this disease.

In addition to the SNVs analysis, researchers investigated 622 immune disease-related genes, and the results showed that the coding variants, at least common and low-frequency nonsynonymous variants, have limited independent contribution to psoriasis risk. Taking all the findings together, the study indicated that nonsynonymous SNVs in the 1,326 targeted genes had limited contribution to the overall genetic risk of psoriasis.

Compared with previous work on European population, this research also demonstrated the genetic heterogeneity between European and Chinese populations. The missense variant (rs72474224) in GJB2 seemed to be specific to Chinese individuals, while the one (rs11209026) in IL23R was specific to European individuals. And another common missense variant (rs11652075) in CARD14 showed consistent between European and Chinese samples.

Xin Jin, co-author of this study at BGI, said, "Target sequencing in such a large sample size enables us to investigate full spectrum of variants in these region. Although we did not identify any low-frequency or rare coding variants with strong genetic effect, the data helps us to refine several known GWAS loci and identify some candidate casual variants. It remains to be shown whether limited contribution of rare coding variants will also hold true for other regions outside the target and in other common diseases beyond psoriasis."

About BGI

BGI was founded in 1999 with the mission of being a premier scientific partner to the global research community. The goal of BGI is to make leading-edge genomic science highly accessible through its investment in infrastructure that leverages the best available technology, economies of scale, and expert bioinformatics resources. BGI, which includes both private non-profit genomic research institutes and sequencing application commercial units, and its affiliates, BGI Americas, headquartered in Cambridge, MA, and BGI Europe, headquartered in Copenhagen, Denmark, have established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications.

BGI has established a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research which has generated over 250 publications in top-tier journals such as Nature and Science. These accomplishments include sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, most recently, have sequenced the human Gut metagenome, and a significant proportion of the genomes for 1,000 genomes. For more information about BGI please visit http://www.genomics.cn.

Contact Information:

Bicheng Yang, Ph.D.Public Communication Officer
BGI+86-755-82639701yangbicheng@genomics.cnhttp://www.genomics.cn

Jia Liu | EurekAlert!
Further information:
http://www.genomics.cn

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>