Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Contrast Agent for Tumor Diagnostics

24.03.2011
Phosphorescent metal–organic coordination polymers for optical imaging

X-rays are not the only way: visible and especially infrared light can also be used to image human tissue. The effectiveness of optical imaging processes can be significantly improved with suitable dyes used as contrast agents.

In the journal Angewandte Chemie, a team led by Wenbin Lin at the University of North Carolina (Chapel Hill, USA) has now introduced a novel contrast agent that marks tumor cells in vitro. The dye is a phosphorescent ruthenium complex incorporated into nanoparticles of a metal–organic coordination polymer, which allows an extraordinarily high level of dye loading.

Fluorescent dyes accumulate in varying amounts in different types of tissue. Such contrast agents make it possible to use optical imaging to differentiate between healthy and tumorous tissue. However, this method is limited by the fact that very high concentrations of dye are needed to produce sufficiently strong fluorescence. Organic dye molecules packed at high concentrations into nanocapsules tend to quench each other’s fluorescence. Materials that fluoresce more strongly, such as quantum dots, are often not biocompatible.

This team has now developed an alternative: metal complexes connected to form lattice-like coordination polymers. Coordination polymers are metal–organic structures consisting of metal ions, which act as connecting points, linked by bridges made of organic molecules or coordination complexes. The scientists made such polymers with bridges consisting of a light-emitting complex of the metal ruthenium. Zirconium ions proved to be suitable connecting points. These tiny structures form spherical nanoparticles.

The ruthenium complexes do not fluoresce, but rather phosphoresce, which means that they emit light for a proportional length of time after irradiation with light. Because they are not placed inside a nano-transport container, but are a component of the nanoparticle, it is possible to attain a very high level of dye loading—in this instance over 50 %. Quenching of the phosphorescence at high concentrations does not occur in such complexes.

In order to prevent the glowing particles from rapidly dissolving and to increase the biocompatibility, they were coated with thin layers of silicon dioxide and a layer of polyethylene glycol. The latter acts as an anchor point for anisamide, a molecule that specifically binds to receptors that are far more common on the surfaces of many types of tumor cell than on healthy cells.

In a cell culture, it was possible to selectively mark a line of cancer cells with the phosphorescent nanoparticles. The researchers hope that it will be possible to develop contrast agents for the use of optical imaging for tumor detection based on these new metal–organic nanomaterials.

Author: Wenbin Lin, University of North Carolina, Chapel Hill (USA), http://www.chem.unc.edu/people/faculty/linw/wlindex.
Title: Phosphorescent Nanoscale Coordination Polymers as Contrast Agents for Optical Imaging

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201008277

Wenbin Lin | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chem.unc.edu/people/faculty/linw/wlindex

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>