Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Contrast Agent for Tumor Diagnostics

24.03.2011
Phosphorescent metal–organic coordination polymers for optical imaging

X-rays are not the only way: visible and especially infrared light can also be used to image human tissue. The effectiveness of optical imaging processes can be significantly improved with suitable dyes used as contrast agents.

In the journal Angewandte Chemie, a team led by Wenbin Lin at the University of North Carolina (Chapel Hill, USA) has now introduced a novel contrast agent that marks tumor cells in vitro. The dye is a phosphorescent ruthenium complex incorporated into nanoparticles of a metal–organic coordination polymer, which allows an extraordinarily high level of dye loading.

Fluorescent dyes accumulate in varying amounts in different types of tissue. Such contrast agents make it possible to use optical imaging to differentiate between healthy and tumorous tissue. However, this method is limited by the fact that very high concentrations of dye are needed to produce sufficiently strong fluorescence. Organic dye molecules packed at high concentrations into nanocapsules tend to quench each other’s fluorescence. Materials that fluoresce more strongly, such as quantum dots, are often not biocompatible.

This team has now developed an alternative: metal complexes connected to form lattice-like coordination polymers. Coordination polymers are metal–organic structures consisting of metal ions, which act as connecting points, linked by bridges made of organic molecules or coordination complexes. The scientists made such polymers with bridges consisting of a light-emitting complex of the metal ruthenium. Zirconium ions proved to be suitable connecting points. These tiny structures form spherical nanoparticles.

The ruthenium complexes do not fluoresce, but rather phosphoresce, which means that they emit light for a proportional length of time after irradiation with light. Because they are not placed inside a nano-transport container, but are a component of the nanoparticle, it is possible to attain a very high level of dye loading—in this instance over 50 %. Quenching of the phosphorescence at high concentrations does not occur in such complexes.

In order to prevent the glowing particles from rapidly dissolving and to increase the biocompatibility, they were coated with thin layers of silicon dioxide and a layer of polyethylene glycol. The latter acts as an anchor point for anisamide, a molecule that specifically binds to receptors that are far more common on the surfaces of many types of tumor cell than on healthy cells.

In a cell culture, it was possible to selectively mark a line of cancer cells with the phosphorescent nanoparticles. The researchers hope that it will be possible to develop contrast agents for the use of optical imaging for tumor detection based on these new metal–organic nanomaterials.

Author: Wenbin Lin, University of North Carolina, Chapel Hill (USA), http://www.chem.unc.edu/people/faculty/linw/wlindex.
Title: Phosphorescent Nanoscale Coordination Polymers as Contrast Agents for Optical Imaging

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201008277

Wenbin Lin | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chem.unc.edu/people/faculty/linw/wlindex

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>