Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Contaminant Transport in the Fungal Pipeline

26.07.2012
Fungi are found throughout the soil with giant braiding of fine threads.

However, these networks have surprising functions. Only a few years ago researchers from the Helmholtz Centre for Environmental Research (UFZ) discovered that bacteria travel over the fungal threads through the labyrinth of soil pores, much the same as on a highway.


Micrograph of the mycelia-forming soil microorganism Pythium ultimum transporting the contaminant phenanthrene in its hyphae: Overlay of a light transmission and a fluorescence micrograph of Pythium ultimum. The hyphae contain phenanthrene-enriched vesicles that fluoresce in blue (bar length: 5 micrometers).
Photo: Susan Foß/UFZ



Now, together with British colleagues from the University of Lancaster, the UFZ researchers have come upon another phenomenon. Accordingly, the fungal networks also transports contaminants which are otherwise largely immobile in the ground. These living pipelines can therefore contribute to the restoration of impacted areas, write the researchers in the journal Environmental Science & Technology.

Some bacteria develop a voracious appetite for contaminants. They nourish themselves from toxic chemicals and at the same time convert these to harmless substances. This makes them valuable allies for the elimination of different forms of environmental pollution. Certain soil microbes, for example, are fully capable of restoring impacted ground by natural means. Theoretically at least. In practice, however, the tiny helpers are frequently pushed to their limits. "The problem is that the contaminants often do not even reach them", explains UFZ researcher Lukas Y. Wick, in charge of the new study.

The bacteria frequently have difficulties with substances which are largely insoluble in water. These include, for example, the polycyclic aromatic hydrocarbons (PAHs) found in crude oil and coal, released in practically all combustion processes. Along well-travelled roads, in the vicinity of airports or old gas works sites, the ground can also be polluted with these compounds. As many PAHs are considered to be carcinogenic, the help of bacteria for the degradation of this pollution would be entirely welcome.

In the complicated labyrinth of water-filled and air-filled pores found throughout the soil, however, bacteria and PAHs rarely come together. This is because the microorganisms are predominantly found in water and in thin liquid films. "The PAHs are virtually insoluble in water, so that they frequently staple themselves to particles of ground in tiny, air-filled pores", which the bacteria are unable to reach, explains Lukas Y. Wick. Between them and their sources of nutrition there are air barriers.

A living network

Nevertheless, there are soil organisms which can effectively overcome such barriers. These include fungi and a group of similar organisms which biologists describe as "pseudo-fungi". Both can grow either in water or in air and are found throughout the soil with a network of fine threads. Each of these so-called hyphae is in fact only a few thousandths of a millimetre thick. Yet, together they form a network of enormous dimensions. One single gram of soil may contain up to 1000 to 10,000 meters of fungal threads. A single braid thereby can extend over several square kilometres. Fungi are therefore in fact the largest living creatures on the Earth today.

That bacteria are fully capable of utilising the infrastructure of this huge neighbour, emerges from an earlier study of Lukas Y. Wick and his colleagues. The fungal braiding appears to be a kind of highway over which the microorganisms can effectively travel and propagate. They move on the surface of the hyphae and, in this way, overcome the air barriers between two water-filled pores without problem.

But what if the fungal network offers good travel possibilities not only for bacteria, but for contaminants as well? Nevertheless, it is known that the transport of nutrients which the fungus requires to survive takes place within the hyphae. Why should this not function, then, with other substances? Together with colleagues from the University of Lancaster, the UFZ researchers have now pursued this question.

For their investigations the researchers employed a pseudo-fungus with the name Pythium ultimum, which is widespread in the soil. This was placed on a central plate with nutrients, proceeding from which it could extend its hyphae to the right and left to two further sources of nourishment. The three nourishment stations were connected by rectangles of nourishment-free material. However, there were several gaps between the nourishment plates and rectangles containing only air. These were intended to simulate the air-filled pores in the ground.

At the edge of a rectangle the UFZ researchers applied a polycyclic aromatic carbohydrate with the name Phenanthrene. They then investigated at regular intervals whether this substance could be detected in other areas of the test path. "The results were astounding", says Lukas Y. Wick. Within a few hours the carbohydrate had migrated from one end of the experimental arrangement to the other – from ten to one hundred times faster than it could have by simple diffusion. Furthermore, it overcame the air gaps with no difficulty, which was not possible over the same path without hyphal networks. "The hyphal networks are therefore not only highways for bacteria, but also pipelines for contaminants", concludes Lukas Wick. "Per hour a single hypha can transport up to 600 times the weight of an individual bacterium".

With a special microscope of the British colleagues it was even possible to observe this transport in detail. Accordingly, the contaminant migrates through the cell wall into the interior of the hyphae. There it is enclosed in tiny bubbles, which Pythium ultimum then actively pumps through its far-reaching network.

Contaminants in motion

In this way the fungal pipeline mobilises not only Phenanthrene, but also other substances virtually insoluble in water and therefore sooner immobile substances. The researchers repeated the experiment with a number of different PAHs, and all were found to be efficiently transported. However, over longer paths the transport of small molecules functioned better than that of large molecules. "Presumably the latter are not taken up as well by the hyphae", in the opinion of Lukas Y. Wick.

In this experiment even the longer paths consisted of only a few centimetres. This may appear to be relatively little, however it could still prove decisive for better contact between the contaminants and their decomposers, as the fungal pipeline effortlessly overcomes the minute air barriers between the water-filled soil pores.

The researchers hope that this effect can be utilised in future for the restoration of impacted ground. The targeted use of fungal networks could accelerate the degradation of PAHs and perhaps also of other substances virtually insoluble in water. "But this may function only when one combines the right fungi and bacteria", explains Lukas Y. Wick. Some types of these organisms are simply not compatible or even mutually inhibit each other. Consequently, the UFZ researchers are now searching for the most suitable partners for their microbial contaminant eliminator team.

Kerstin Viering

Publication:

Shoko Furuno, Susan Foss, Ed Wild, Kevin C. Jones, Kirk T. Semple, Hauke Harms and Lukas Y. Wick (2012): Mycelia Promote Active Transport and Spatial Dispersion of Polycyclic Aromatic Hydrocarbons. Environ. Sci. Technol. 2012, 46, 5463−5470

http://dx.doi.org/10.1021/es300810b

The studies were founded by the EU project MC-20 984 EST (RAISEBIO) and by the Helmholtz Association ("CITE - Chemicals in the Environment").

Further Information

Helmholtz Centre for Environmental Research (UFZ)
Dr. Lukas Y. Wick
phone: +49-341-235-1316
http://www.ufz.de/index.php?de=13567
or via
Tilo Arnhold (UFZ Press Office)
Phone: +49-341-235-1635
www.ufz.de/index.php?en=640
Links
Scientists demonstrate the existence of underground ‘highways’ for bacteria (Press release, 8. February 2007):

http://www.ufz.de/index.php?en=10837

At the Helmholtz Centre for Environmental Research (UFZ) scientists are researching the causes and consequences of far-reaching changes to the environment. They are concerned with water resources, biological diversity, the consequences of climate change and adaptability, environmental and biotechnologies, bioenergy, the behaviour of chemicals in the environment, their effect on health, modelling and social science issues. Their guiding theme: Our research contributes to the sustainable use of natural resources and helps to secure this basis for life over the long term under the effects of global change. The UFZ employs 1,000 people in Leipzig, Halle and Magdeburg. It is financed by the federal government and the federal states of Saxony and Saxony-Anhalt.

The Helmholtz Association contributes towards solving major and pressing social, scientific and economic issues with scientific excellence in six research areas: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Aeronautics, Aerospace and Transport. The Helmholtz Association is Germany’s largest scientific organisation with over 33,000 employees in 18 research centres and an annual budget of approximately 3.4 billion euros. Its work stands in the tradition of the naturalist Hermann von Helmholtz (1821-1894).

Tilo Arnhold | EurekAlert!
Further information:
http://www.ufz.de/index.php?en=30703

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>