Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can contact with textiles spread herpes simplex?

20.03.2009
Hohenstein Institute investigates textiles as infection pathway

Herpes cold sores are as despised as they are common. The ailment is one of the most prevalent skin diseases in Germany.


According to the latest research at Hohenstein's Institute for Hygiene and Biotechnology (IHB), it seems likely that contaminated textiles may be another pathway for the spread of herpes pathogens in addition to the well-known means, including contact with saliva and by touching surfaces after scratching open herpes sores around the mouth.

With the help of molecular biological analysis, scientists at the Hohenstein Institute have successfully demonstrated that the herpes-simplex virus (HSV-1, see Figure 1) adheres strongly to textile fibres. The results clearly indicate that spread of infection may also be possible via, for example, hand towels, serviettes, and dish and cleaning cloths which a herpes sufferer previously used.

During the adhesion experiment at the IHB, a suspension of HSV-1 particles was used to contaminate small swatches of textiles directly. The results indicated that the herpes virus was still present on the textile after 48 hours at room temperature. Based on studies showing that the herpes simplex virus remains persistent on hard surfaces for eight weeks (Mahl and Sadler, 1975), one can suspect that infectious particles were also likely present on the textile.

The virus's DNA could still be found on the swatches even after laundering at 40°C in a conventional household washing machine using household detergents. This underscores the high level of adhesion of the herpes virus to textile fibres, regardless of whether these are infectious particles or not. But after laundering herpes infection via textiles remains improbable because the envelope of the virus, which plays a significant role in transmission, is very delicate. Nevertheless, based on these initial results, the danger of infection cannot conclusively be ruled out.

At the Hohenstein Institute's IHB, now established molecular biological techniques are used to detect the herpes's pathogen due to a specific enzyme reaction to its nucleic acids (DNA). Two steps are required in this process. First, heat is used break up the viral envelope to obtain access to the nucleic acids and extract DNA from the temperature-sensitive HSV-1 particles. Then, a pre-defined section of the DNA is selectively amplified using what is known as a polymerase chain reaction (PCR). The section of viral DNA can then be detected according to its pre-defined length.

The scientists at the Institute for Hygiene and Biotechnology aim to apply the molecular biological techniques that have been developed not only for research on viruses, but for consumer-orientated services in future. Official authorities in Tuebingen have issued the required permit for genetic engineering research at safety level 1.

This new research discipline at the Hohenstein Institute makes possible, for example, a comprehensive screening of the adhesion of different viruses to textiles in order to gain more precise insight into the potential for their spread via textiles, including garments and other textile products. In future, the knowledge gained through microbiological research can be used in the development of new materials that are resistant to viral adhesion which will prevent the spread viruses that have a pathogenic effect on humans or animals.

Rose-Marie Riedl | idw
Further information:
http://www.hohenstein.de
http://www.hohenstein.de/en/content/content1.asp?hohenstein=47-0-0-625-2009

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>