Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can contact with textiles spread herpes simplex?

20.03.2009
Hohenstein Institute investigates textiles as infection pathway

Herpes cold sores are as despised as they are common. The ailment is one of the most prevalent skin diseases in Germany.


According to the latest research at Hohenstein's Institute for Hygiene and Biotechnology (IHB), it seems likely that contaminated textiles may be another pathway for the spread of herpes pathogens in addition to the well-known means, including contact with saliva and by touching surfaces after scratching open herpes sores around the mouth.

With the help of molecular biological analysis, scientists at the Hohenstein Institute have successfully demonstrated that the herpes-simplex virus (HSV-1, see Figure 1) adheres strongly to textile fibres. The results clearly indicate that spread of infection may also be possible via, for example, hand towels, serviettes, and dish and cleaning cloths which a herpes sufferer previously used.

During the adhesion experiment at the IHB, a suspension of HSV-1 particles was used to contaminate small swatches of textiles directly. The results indicated that the herpes virus was still present on the textile after 48 hours at room temperature. Based on studies showing that the herpes simplex virus remains persistent on hard surfaces for eight weeks (Mahl and Sadler, 1975), one can suspect that infectious particles were also likely present on the textile.

The virus's DNA could still be found on the swatches even after laundering at 40°C in a conventional household washing machine using household detergents. This underscores the high level of adhesion of the herpes virus to textile fibres, regardless of whether these are infectious particles or not. But after laundering herpes infection via textiles remains improbable because the envelope of the virus, which plays a significant role in transmission, is very delicate. Nevertheless, based on these initial results, the danger of infection cannot conclusively be ruled out.

At the Hohenstein Institute's IHB, now established molecular biological techniques are used to detect the herpes's pathogen due to a specific enzyme reaction to its nucleic acids (DNA). Two steps are required in this process. First, heat is used break up the viral envelope to obtain access to the nucleic acids and extract DNA from the temperature-sensitive HSV-1 particles. Then, a pre-defined section of the DNA is selectively amplified using what is known as a polymerase chain reaction (PCR). The section of viral DNA can then be detected according to its pre-defined length.

The scientists at the Institute for Hygiene and Biotechnology aim to apply the molecular biological techniques that have been developed not only for research on viruses, but for consumer-orientated services in future. Official authorities in Tuebingen have issued the required permit for genetic engineering research at safety level 1.

This new research discipline at the Hohenstein Institute makes possible, for example, a comprehensive screening of the adhesion of different viruses to textiles in order to gain more precise insight into the potential for their spread via textiles, including garments and other textile products. In future, the knowledge gained through microbiological research can be used in the development of new materials that are resistant to viral adhesion which will prevent the spread viruses that have a pathogenic effect on humans or animals.

Rose-Marie Riedl | idw
Further information:
http://www.hohenstein.de
http://www.hohenstein.de/en/content/content1.asp?hohenstein=47-0-0-625-2009

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>