Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can contact with textiles spread herpes simplex?

20.03.2009
Hohenstein Institute investigates textiles as infection pathway

Herpes cold sores are as despised as they are common. The ailment is one of the most prevalent skin diseases in Germany.


According to the latest research at Hohenstein's Institute for Hygiene and Biotechnology (IHB), it seems likely that contaminated textiles may be another pathway for the spread of herpes pathogens in addition to the well-known means, including contact with saliva and by touching surfaces after scratching open herpes sores around the mouth.

With the help of molecular biological analysis, scientists at the Hohenstein Institute have successfully demonstrated that the herpes-simplex virus (HSV-1, see Figure 1) adheres strongly to textile fibres. The results clearly indicate that spread of infection may also be possible via, for example, hand towels, serviettes, and dish and cleaning cloths which a herpes sufferer previously used.

During the adhesion experiment at the IHB, a suspension of HSV-1 particles was used to contaminate small swatches of textiles directly. The results indicated that the herpes virus was still present on the textile after 48 hours at room temperature. Based on studies showing that the herpes simplex virus remains persistent on hard surfaces for eight weeks (Mahl and Sadler, 1975), one can suspect that infectious particles were also likely present on the textile.

The virus's DNA could still be found on the swatches even after laundering at 40°C in a conventional household washing machine using household detergents. This underscores the high level of adhesion of the herpes virus to textile fibres, regardless of whether these are infectious particles or not. But after laundering herpes infection via textiles remains improbable because the envelope of the virus, which plays a significant role in transmission, is very delicate. Nevertheless, based on these initial results, the danger of infection cannot conclusively be ruled out.

At the Hohenstein Institute's IHB, now established molecular biological techniques are used to detect the herpes's pathogen due to a specific enzyme reaction to its nucleic acids (DNA). Two steps are required in this process. First, heat is used break up the viral envelope to obtain access to the nucleic acids and extract DNA from the temperature-sensitive HSV-1 particles. Then, a pre-defined section of the DNA is selectively amplified using what is known as a polymerase chain reaction (PCR). The section of viral DNA can then be detected according to its pre-defined length.

The scientists at the Institute for Hygiene and Biotechnology aim to apply the molecular biological techniques that have been developed not only for research on viruses, but for consumer-orientated services in future. Official authorities in Tuebingen have issued the required permit for genetic engineering research at safety level 1.

This new research discipline at the Hohenstein Institute makes possible, for example, a comprehensive screening of the adhesion of different viruses to textiles in order to gain more precise insight into the potential for their spread via textiles, including garments and other textile products. In future, the knowledge gained through microbiological research can be used in the development of new materials that are resistant to viral adhesion which will prevent the spread viruses that have a pathogenic effect on humans or animals.

Rose-Marie Riedl | idw
Further information:
http://www.hohenstein.de
http://www.hohenstein.de/en/content/content1.asp?hohenstein=47-0-0-625-2009

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>