Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Constricting without a string: Bacteria gone to the worms divide differently

10.10.2016

A new study provides fascinating insights into how bacteria divide. This shows not only how little we know about bacteria outside of the lab, but might also bring us one step closer towards the development of new antibiotics.

Even though the diversity and importance of microorganisms in all ecosystems has been established long time ago, our knowledge in many areas of microbiology is still limited. One of those areas is bacterial cell division, detailing how cells reproduce, creating two daughter cells from one. One of the key proteins involved in this process is FtsZ. Like a rubber band, FtsZ creates a ring around the cell and virtually pinches it off, thus initiating cell division. That’s the theory, according to the current state of knowledge. But things can be quite different, as the study on hand shows.


The rod-shaped bacteria densely populating the surface of the worm belong to the Gammaproteobacteria. These comprise members of our gut microbiome but also some serious pathogens.

Nikolaus Leisch


The nematode Robbea hypermnestra mainly occurs in Caribbean shallow water sediments. Leisch and colleagues collected their samples at the field station of the Smithsonian Institute in Belize.

Nikolaus Lei

“Nearly all research on this topic was done on a handful of model organisms which can be cultivated in the lab”, explains first author Niko Leisch from the Max Planck Institute for Marine Microbiology in Bremen. As a result, many aspects of microbial life remain undiscovered. Leisch, together with the lead scientist Silvia Bulgheresi from the University of Vienna and Tanneke den Blaauwen from the University of Amsterdam, therefore uses organisms that cannot be cultivated in the laboratory. They study bacteria which live as symbionts on the surface of a small nematode. The worm lives in a symbiosis with only a single species of bacteria, which form a dense but highly organized “coat” on the surface of the worm. That’s why, using these worms, we can study pure cultures from the environment”, Leisch explains the “trick”.

The bacterium in question divides longitudinally, which is already highly unusual for a rod-shaped bacterium. On top of that, the scientists found out that the bacteria divide asymmetrically. The division process starts where the cell touches the worm. The cell pole which is directed towards the environment subsequently follows.

„Microbiology textbooks tell us that bacterial cells assemble a ring of FtsZ before division”, Leisch continues. “Despite using high-resolution microscopic approaches with specific dyes, we couldn’t find this ring.” FtsZ was present, but the proteins only accumulated as small patches along the length axis. “As no ring is formed, these patches of FtsZ must individually exert a force to divide the cell. This has so far not been observed and gives rise to many new questions. For example, how is the necessary force generated to divide the cell?”

Why all of this matters? “The majority of what we know nowadays about bacteria, their growth and reproduction comes from the work from cultivable model organisms”, says Leisch. “But especially the work on bacteria from the environment done in the last few years has shown again and again how the cell division machinery is much more flexible and complex than what we though. And a better understanding of growth and division of bacteria are crucial for the development of potential new antibiotics.”

The scientists suspect that the worm on which the bacteria live influences their cell division. It seems to control its symbiotic residents quite well. For example, it somehow manages to keep its head and tail clear of the otherwise dense coat of bacteria. “We still don’t know how it does that”, says Leisch.

“Resistance to antibiotics is a big issue nowadays. The development of new antibiotics aims towards inhibiting growth and reproduction of bacteria. This worm obviously manages to do just that. If we can understand how it accomplishes that, it would be a great step forward.”

The unusual cell division of this bacterium is probably an adaptation to the symbiotic lifestyle, Leisch and his colleagues suspect. But to better understand the processes and their importance they emphasize that more studies need to be performed on such non-model organisms.

Original publication
Nikolaus Leisch, Nika Pende, Philipp M. Weber, Harald R. Gruber-Vodicka, Jolanda 

Verheul, Norbert O. E. Vischer, Sophie S. Abby, Benedikt Geier, Tanneke den Blaauwen and Silvia Bulgheresi: Asynchronous division by non-ring FtsZ in the gammaproteobacterial symbiont of Robbea hypermnestra. Nature Microbiology.
DOI: 10.1038/nmicrobiol.2016.182 



Participating institutes
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
University of Vienna, Department of Ecogenetics and Systems Biology, Althanstrasse 14, 1090 Vienna, Austria 

Bacterial Cell Biology, Swammerdam Institute of Life Sciences, University of Amsterdam, Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands 


Please direct your queries to

Dr. Nikolaus Leisch
Phone: +49 421 2028 822
E-Mail: nleisch(at)mpi-bremen.de

or the press office

Dr. Fanni Aspetsberger
Dr. Manfred Schlösser
Phone: +49 421 2028 704
E-Mail: presse(at)mpi-bremen.de

Weitere Informationen:

http://www.mpi-bremen.de

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>