Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Constricting without a string: Bacteria gone to the worms divide differently

10.10.2016

A new study provides fascinating insights into how bacteria divide. This shows not only how little we know about bacteria outside of the lab, but might also bring us one step closer towards the development of new antibiotics.

Even though the diversity and importance of microorganisms in all ecosystems has been established long time ago, our knowledge in many areas of microbiology is still limited. One of those areas is bacterial cell division, detailing how cells reproduce, creating two daughter cells from one. One of the key proteins involved in this process is FtsZ. Like a rubber band, FtsZ creates a ring around the cell and virtually pinches it off, thus initiating cell division. That’s the theory, according to the current state of knowledge. But things can be quite different, as the study on hand shows.


The rod-shaped bacteria densely populating the surface of the worm belong to the Gammaproteobacteria. These comprise members of our gut microbiome but also some serious pathogens.

Nikolaus Leisch


The nematode Robbea hypermnestra mainly occurs in Caribbean shallow water sediments. Leisch and colleagues collected their samples at the field station of the Smithsonian Institute in Belize.

Nikolaus Lei

“Nearly all research on this topic was done on a handful of model organisms which can be cultivated in the lab”, explains first author Niko Leisch from the Max Planck Institute for Marine Microbiology in Bremen. As a result, many aspects of microbial life remain undiscovered. Leisch, together with the lead scientist Silvia Bulgheresi from the University of Vienna and Tanneke den Blaauwen from the University of Amsterdam, therefore uses organisms that cannot be cultivated in the laboratory. They study bacteria which live as symbionts on the surface of a small nematode. The worm lives in a symbiosis with only a single species of bacteria, which form a dense but highly organized “coat” on the surface of the worm. That’s why, using these worms, we can study pure cultures from the environment”, Leisch explains the “trick”.

The bacterium in question divides longitudinally, which is already highly unusual for a rod-shaped bacterium. On top of that, the scientists found out that the bacteria divide asymmetrically. The division process starts where the cell touches the worm. The cell pole which is directed towards the environment subsequently follows.

„Microbiology textbooks tell us that bacterial cells assemble a ring of FtsZ before division”, Leisch continues. “Despite using high-resolution microscopic approaches with specific dyes, we couldn’t find this ring.” FtsZ was present, but the proteins only accumulated as small patches along the length axis. “As no ring is formed, these patches of FtsZ must individually exert a force to divide the cell. This has so far not been observed and gives rise to many new questions. For example, how is the necessary force generated to divide the cell?”

Why all of this matters? “The majority of what we know nowadays about bacteria, their growth and reproduction comes from the work from cultivable model organisms”, says Leisch. “But especially the work on bacteria from the environment done in the last few years has shown again and again how the cell division machinery is much more flexible and complex than what we though. And a better understanding of growth and division of bacteria are crucial for the development of potential new antibiotics.”

The scientists suspect that the worm on which the bacteria live influences their cell division. It seems to control its symbiotic residents quite well. For example, it somehow manages to keep its head and tail clear of the otherwise dense coat of bacteria. “We still don’t know how it does that”, says Leisch.

“Resistance to antibiotics is a big issue nowadays. The development of new antibiotics aims towards inhibiting growth and reproduction of bacteria. This worm obviously manages to do just that. If we can understand how it accomplishes that, it would be a great step forward.”

The unusual cell division of this bacterium is probably an adaptation to the symbiotic lifestyle, Leisch and his colleagues suspect. But to better understand the processes and their importance they emphasize that more studies need to be performed on such non-model organisms.

Original publication
Nikolaus Leisch, Nika Pende, Philipp M. Weber, Harald R. Gruber-Vodicka, Jolanda 

Verheul, Norbert O. E. Vischer, Sophie S. Abby, Benedikt Geier, Tanneke den Blaauwen and Silvia Bulgheresi: Asynchronous division by non-ring FtsZ in the gammaproteobacterial symbiont of Robbea hypermnestra. Nature Microbiology.
DOI: 10.1038/nmicrobiol.2016.182 



Participating institutes
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
University of Vienna, Department of Ecogenetics and Systems Biology, Althanstrasse 14, 1090 Vienna, Austria 

Bacterial Cell Biology, Swammerdam Institute of Life Sciences, University of Amsterdam, Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands 


Please direct your queries to

Dr. Nikolaus Leisch
Phone: +49 421 2028 822
E-Mail: nleisch(at)mpi-bremen.de

or the press office

Dr. Fanni Aspetsberger
Dr. Manfred Schlösser
Phone: +49 421 2028 704
E-Mail: presse(at)mpi-bremen.de

Weitere Informationen:

http://www.mpi-bremen.de

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>