Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Constricting without a string: Bacteria gone to the worms divide differently

10.10.2016

A new study provides fascinating insights into how bacteria divide. This shows not only how little we know about bacteria outside of the lab, but might also bring us one step closer towards the development of new antibiotics.

Even though the diversity and importance of microorganisms in all ecosystems has been established long time ago, our knowledge in many areas of microbiology is still limited. One of those areas is bacterial cell division, detailing how cells reproduce, creating two daughter cells from one. One of the key proteins involved in this process is FtsZ. Like a rubber band, FtsZ creates a ring around the cell and virtually pinches it off, thus initiating cell division. That’s the theory, according to the current state of knowledge. But things can be quite different, as the study on hand shows.


The rod-shaped bacteria densely populating the surface of the worm belong to the Gammaproteobacteria. These comprise members of our gut microbiome but also some serious pathogens.

Nikolaus Leisch


The nematode Robbea hypermnestra mainly occurs in Caribbean shallow water sediments. Leisch and colleagues collected their samples at the field station of the Smithsonian Institute in Belize.

Nikolaus Lei

“Nearly all research on this topic was done on a handful of model organisms which can be cultivated in the lab”, explains first author Niko Leisch from the Max Planck Institute for Marine Microbiology in Bremen. As a result, many aspects of microbial life remain undiscovered. Leisch, together with the lead scientist Silvia Bulgheresi from the University of Vienna and Tanneke den Blaauwen from the University of Amsterdam, therefore uses organisms that cannot be cultivated in the laboratory. They study bacteria which live as symbionts on the surface of a small nematode. The worm lives in a symbiosis with only a single species of bacteria, which form a dense but highly organized “coat” on the surface of the worm. That’s why, using these worms, we can study pure cultures from the environment”, Leisch explains the “trick”.

The bacterium in question divides longitudinally, which is already highly unusual for a rod-shaped bacterium. On top of that, the scientists found out that the bacteria divide asymmetrically. The division process starts where the cell touches the worm. The cell pole which is directed towards the environment subsequently follows.

„Microbiology textbooks tell us that bacterial cells assemble a ring of FtsZ before division”, Leisch continues. “Despite using high-resolution microscopic approaches with specific dyes, we couldn’t find this ring.” FtsZ was present, but the proteins only accumulated as small patches along the length axis. “As no ring is formed, these patches of FtsZ must individually exert a force to divide the cell. This has so far not been observed and gives rise to many new questions. For example, how is the necessary force generated to divide the cell?”

Why all of this matters? “The majority of what we know nowadays about bacteria, their growth and reproduction comes from the work from cultivable model organisms”, says Leisch. “But especially the work on bacteria from the environment done in the last few years has shown again and again how the cell division machinery is much more flexible and complex than what we though. And a better understanding of growth and division of bacteria are crucial for the development of potential new antibiotics.”

The scientists suspect that the worm on which the bacteria live influences their cell division. It seems to control its symbiotic residents quite well. For example, it somehow manages to keep its head and tail clear of the otherwise dense coat of bacteria. “We still don’t know how it does that”, says Leisch.

“Resistance to antibiotics is a big issue nowadays. The development of new antibiotics aims towards inhibiting growth and reproduction of bacteria. This worm obviously manages to do just that. If we can understand how it accomplishes that, it would be a great step forward.”

The unusual cell division of this bacterium is probably an adaptation to the symbiotic lifestyle, Leisch and his colleagues suspect. But to better understand the processes and their importance they emphasize that more studies need to be performed on such non-model organisms.

Original publication
Nikolaus Leisch, Nika Pende, Philipp M. Weber, Harald R. Gruber-Vodicka, Jolanda 

Verheul, Norbert O. E. Vischer, Sophie S. Abby, Benedikt Geier, Tanneke den Blaauwen and Silvia Bulgheresi: Asynchronous division by non-ring FtsZ in the gammaproteobacterial symbiont of Robbea hypermnestra. Nature Microbiology.
DOI: 10.1038/nmicrobiol.2016.182 



Participating institutes
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
University of Vienna, Department of Ecogenetics and Systems Biology, Althanstrasse 14, 1090 Vienna, Austria 

Bacterial Cell Biology, Swammerdam Institute of Life Sciences, University of Amsterdam, Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands 


Please direct your queries to

Dr. Nikolaus Leisch
Phone: +49 421 2028 822
E-Mail: nleisch(at)mpi-bremen.de

or the press office

Dr. Fanni Aspetsberger
Dr. Manfred Schlösser
Phone: +49 421 2028 704
E-Mail: presse(at)mpi-bremen.de

Weitere Informationen:

http://www.mpi-bremen.de

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>