Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conspicuous tRNA lookalikes riddle the human genome

09.10.2014

Transfer RNAs (tRNAs) are ancient workhorse molecules and part of the cellular process that creates the proteins, critical building blocks of life that keep a cell running smoothly.

A new discovery suggests that the number of human genomic loci that might be coding for tRNAs is nearly double what is currently known. Most of the newly identified loci resemble the sequences of mitochondrial tRNAs suggesting unexpected new links between the human nuclear and mitochondrial genomes, links that are not currently understood.

Transfer RNAs (tRNAs) represent an integral component of the translation of a messenger RNA (mRNA) into an amino acid sequence. TRNAs are non-coding RNA molecules and can be found in all three kingdoms of life i.e., in archaea, bacteria and eukaryotes.

At the DNA level, a triplet of consecutive nucleotides known as the "codon" is used to encode an amino acid. Frequently, a given amino acid can be encoded by more than one codon: in fact, there are 61 distinct codons encoding the 20 standard human amino acids. During translation, each of the codons contained in the coding region of the mRNA at hand is recognized by its matching tRNA and the corresponding amino acid added to the nascent amino acid sequence.

It has been known for many years that each of these 61 tRNAs has multiple copies spread throughout the genome that is found in the human nucleus. The presence of multiple genomic loci from which the same molecule can be made is a fairly standard trick of genomic organization: processing these loci in parallel can ensure that adequate amounts of each tRNA can be generated quickly enough to meet the high demand that the amino acid translation process imposes on the cell.

In addition to the 61 tRNAs that are found in the human nuclear genome, 22 more tRNAs are encoded in the genome of the cellular organelle known as the mitochondrion: the mitochondrion, originally a bacterium itself, uses these 22 tRNAs to make proteins out of the just-over-a-dozen mRNAs that are encoded in its genome.

Recent research efforts have shown that tRNAs can have other roles, which go beyond their involvement in protein synthesis. For example, tRNAs can affect the physiology of a cell, they can modulate the abundance of important molecules, etc. These and other unexpected findings have revived interest in looking at tRNAs, this time under a different prism. But, how many tRNAs are actually encoded by the human genome and could be potentially involved in amino acid translation and other processes?

A team led by Isidore Rigoutsos, Director of the Computational Medicine Center at Thomas Jefferson University (TJU), set out to tackle this question and they have reported their findings in a study that was just published in the journal Frontiers in Genetics. "What we found, frankly, surprised us," said Rigoutsos.

The team searched the 3 billion base pairs of the human genome for DNA sequences that resembled the 530 known nuclear and mitochondrial tRNAs. Even though they used very stringent criteria in their searches, they found 454 "lookalike" loci, i.e., sequences that look like tRNA, but haven't yet been experimentally confirmed as such. The researchers found nearly as many as the known ones with which they started: 81% of these tRNA-lookalikes had not been reported previously. Rather unexpectedly, the team found that most of these new loci resembled some of the 22 mitochondrial tRNAs.

Interestingly, the discovered tRNA lookalikes are not spread uniformly across the 24 chromosomes. Instead, they have penetrated preferentially some chromosomes and have avoided others. For example, chromosomes 1, 2, 7, 8 and 9 claim the lion's share of the discovered tRNA-lookalikes. On the other hand, chromosome 18 contains no lookalikes. Also, some of the codons are particularly over-represented among the lookalikes whereas other codons are absent.

The surprises did not stop there. The team also discovered that in the chromosomes where the tRNA-lookalikes are found their locations are not accidental either. Instead, the lookalikes are positioned in close proximity to known nuclear tRNAs. This of course begs the question whether the tRNA-lookalikes are transcribed, just like the known tRNAs. By examining public repositories, the team found evidence of transcription for more than 20% of the discovered tRNA-lookalikes: the transcriptional profiles appear to depend on cell type, which suggests that more of the look-alikes will be found to be transcribed as data from more cell types become available. On several occasions, the public data revealed evidence for molecules whose endpoints matched exactly the endpoints of the tRNA-lookalikes discovered by the team. "This is certainly exciting, but it is currently unclear whether these molecules participate in translation as tRNAs, or have entirely different roles," said Rigoutsos.

###

The authors report no conflicts of interest.

For more information, contact Edyta Zielinska, 215-955-5291, edyta.zielinska@jefferson.edu.

About Jefferson

Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Thomas Jefferson University includes the Sidney Kimmel Medical College (SKMC), one of the largest private medical schools in the country and ranked among the nation's best medical schools by U.S. News & World Report, the Graduate School of Biomedical Sciences and the Jefferson Schools of Nursing, Pharmacy, Health Professions, and Population Health. Jefferson University Physicians is TJU's multi-specialty physician practice consisting of the full-time faculty of SKMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Article Reference

A.G. Telonis et al., "Nuclear and mitochondrial tRNA-lookalikes in the human genome," Frontiers in Genetics, doi: 10.3389/fgene.2014.00344, 2014.

Edyta Zielinska | Eurek Alert!

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>