Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better connections through green catalysis

07.06.2010
Finely tuned nickel complexes combine important biomolecular precursors with high efficiency and low environmental impact

In chemistry, the nitro group (O-N=O) has a formidable reputation. The high reactivity that makes some nitro-bearing molecules potent explosives—think nitroglycerin or trinitrotoluene (TNT)—also enables NO2 to be extremely versatile in organic synthesis. Chemists can transform nitro groups into numerous other functionalities, such as biologically important amines or carbonyl compounds, providing a constant demand for new, efficient reactions involving these compounds.

Now, researchers led by Mikiko Sodeoka from the RIKEN Advanced Science Institute in Wako have developed an innovative way to connect organic molecules known as nitroalkenes and α-ketoesters together with precisely controlled geometries1. Because this synthesis uses an ‘environmentally friendly’ catalytic system, it can help create a broad range of molecules, including therapeutic natural products, under mild conditions.

Typically, reactions between nitroalkenes and α-ketoesters require hazardous liquids, generous quantities of catalysts, and very low temperatures to be successful. Instead, Sodeoka and her team were able to complete this chemical transformation at room temperature, with a non-toxic propanol solvent, by using small amounts of a nickel acetate catalyst —an advance with significant cost-saving and environmental-hazard reducing potential.

According to Yoshitaka Hamashima, a co-author of the paper, this discovery originated in the team’s previous finding that certain palladium complexes are stable and active catalysts, even in water2. After several trials, the researchers determined that nickel catalysts, which share similar properties to palladium materials, allowed the α-ketoesters to add to nitroalkenes with high yields and purity; over 90% of the final product corresponded to a specific stereoisomer, a molecule with a hard-to-achieve, geometrically distinct structure.

Hamashima explains that the nickel complexes are particularly effective because they recognize specific carbon atoms on the α-ketoesters and chemically activate them, generating products with precise frameworks. Furthermore, nickel has the right properties to maintain a delicate catalytic balance. “Nickel has a reasonable—not too strong, but not too weak—affinity towards nitro groups,” says Hamashima. “This affinity enabled the facile dissociation of the product from the catalyst, allowing high catalytic turnover.”

The high selectivity of this process, when combined with the mild reaction conditions, allowed the researchers to perform similar reactions on a broad range of molecules—including a highly efficient synthesis of the natural product kainic acid analog, a chemical that can bind to glutamate receptors within neuronal cells.

“Such selective activations are key to the success of our reaction,” says Hamashima. “Otherwise, undesired side reactions would occur when compounds with various functional groups are used as substrates.”

The corresponding author for this highlight is based at the Synthetic Organic Chemistry Laboratory, RIKEN Advanced Science Institute

Journal information

1. Nakamura, A., Lectard, S., Hashizume, D., Hamashima, Y. & Sodeoka, M. Diastereo- and enantioselective conjugate addition of α-ketoesters to nitroalkenes catalyzed by a chiral Ni(OAc)2 complex under mild conditions. Journal of the American Chemical Society 132, 4036–4037 (2010)

2. Sodeoka, M. & Hamashima, Y. Chiral Pd aqua complex-catalyzed asymmetric C–C bond-forming reactions: a Brønsted acid–base cooperative system. Chemical Communications 5787–5798 (2009).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6279
http://www.researchsea.com

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>