Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better connections through green catalysis

07.06.2010
Finely tuned nickel complexes combine important biomolecular precursors with high efficiency and low environmental impact

In chemistry, the nitro group (O-N=O) has a formidable reputation. The high reactivity that makes some nitro-bearing molecules potent explosives—think nitroglycerin or trinitrotoluene (TNT)—also enables NO2 to be extremely versatile in organic synthesis. Chemists can transform nitro groups into numerous other functionalities, such as biologically important amines or carbonyl compounds, providing a constant demand for new, efficient reactions involving these compounds.

Now, researchers led by Mikiko Sodeoka from the RIKEN Advanced Science Institute in Wako have developed an innovative way to connect organic molecules known as nitroalkenes and α-ketoesters together with precisely controlled geometries1. Because this synthesis uses an ‘environmentally friendly’ catalytic system, it can help create a broad range of molecules, including therapeutic natural products, under mild conditions.

Typically, reactions between nitroalkenes and α-ketoesters require hazardous liquids, generous quantities of catalysts, and very low temperatures to be successful. Instead, Sodeoka and her team were able to complete this chemical transformation at room temperature, with a non-toxic propanol solvent, by using small amounts of a nickel acetate catalyst —an advance with significant cost-saving and environmental-hazard reducing potential.

According to Yoshitaka Hamashima, a co-author of the paper, this discovery originated in the team’s previous finding that certain palladium complexes are stable and active catalysts, even in water2. After several trials, the researchers determined that nickel catalysts, which share similar properties to palladium materials, allowed the α-ketoesters to add to nitroalkenes with high yields and purity; over 90% of the final product corresponded to a specific stereoisomer, a molecule with a hard-to-achieve, geometrically distinct structure.

Hamashima explains that the nickel complexes are particularly effective because they recognize specific carbon atoms on the α-ketoesters and chemically activate them, generating products with precise frameworks. Furthermore, nickel has the right properties to maintain a delicate catalytic balance. “Nickel has a reasonable—not too strong, but not too weak—affinity towards nitro groups,” says Hamashima. “This affinity enabled the facile dissociation of the product from the catalyst, allowing high catalytic turnover.”

The high selectivity of this process, when combined with the mild reaction conditions, allowed the researchers to perform similar reactions on a broad range of molecules—including a highly efficient synthesis of the natural product kainic acid analog, a chemical that can bind to glutamate receptors within neuronal cells.

“Such selective activations are key to the success of our reaction,” says Hamashima. “Otherwise, undesired side reactions would occur when compounds with various functional groups are used as substrates.”

The corresponding author for this highlight is based at the Synthetic Organic Chemistry Laboratory, RIKEN Advanced Science Institute

Journal information

1. Nakamura, A., Lectard, S., Hashizume, D., Hamashima, Y. & Sodeoka, M. Diastereo- and enantioselective conjugate addition of α-ketoesters to nitroalkenes catalyzed by a chiral Ni(OAc)2 complex under mild conditions. Journal of the American Chemical Society 132, 4036–4037 (2010)

2. Sodeoka, M. & Hamashima, Y. Chiral Pd aqua complex-catalyzed asymmetric C–C bond-forming reactions: a Brønsted acid–base cooperative system. Chemical Communications 5787–5798 (2009).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6279
http://www.researchsea.com

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>