Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Connection discovered between the nervous system and the vascular system

09.06.2011
IRCM researchers show that a key molecule of the vascular system is essential for the formation of neural circuits

Dr. Frédéric Charron, researcher at the Institut de recherches cliniques de Montréal (IRCM), and his team have shown for the first time that a key molecule of the vascular system directs axons during the formation of neural circuits.

This connection between the nervous system and the vascular system could be a good starting point for the development of therapies for neurodegenerative diseases. The discovery will be published tomorrow by Neuron, a scientific journal of the Cell Press group.

"To properly form neural circuits, developing axons (long extensions of neurons that make the nerves) need molecules to guide them towards their target, in the same way that road signs guide us when we drive," explains Pierre Fabre, doctoral student in Dr. Charron's team and first co-author of the article.

The nervous system is not the only system formed during human embryo development. Blood vessels are also organized into a very complex network, which led to the idea that certain molecules could be reused by both the nervous system and the vascular system. In fact, recent studies revealed that the reference points used to guide axons also help blood vessels reach their targets.

"One of the key molecules of the vascular system is the vascular endothelial growth factor, better known as VEGF," adds Mr. Fabre. "We discovered that VEGF is able to attract nervous system axons. More specifically, we identified Flk-1 as the receptor responsible for this effect, making it a prime target for the development of therapies to re-grow axons after lesions of the central nervous system or neurodegenerative diseases."

This scientific breakthrough was possible due to an innovative technique developed by Dr. Charron's laboratory a few years ago. The system uses a microscopic device to control and observe, in real time, the axon's behaviour in response to guidance molecules. This technique allowed the researchers to follow the axon's trajectory and revealed VEGF's role in directing axons.

"This research could have an important long-term impact in the field of spinal cord repair, as the results will help us better understand the development of the spinal cord," says Dr. Charron, Director of the IRCM's Molecular Biology of Neural Development research unit. "The more we learn about the molecules needed to appropriately guide axons, the more it will become possible to develop a therapy to treat spinal cord injuries."

"These new findings are of great interest to the research community as they offer new hope for the treatment of neurodegenerative diseases," says Dr. Anthony Phillips, CIHR's Scientific Director of the Institute of Neurosciences, Mental Health and Addiction. "CIHR recognizes the important work of Dr. Charron's team and this novel discovery linking blood vessels and neurons to neural circuit formation."

This research project was conducted in close collaboration with Dr. Peter Carmeliet's (senior co-author of the article with Dr. Charron) team at the Vesalius Research Center, in Leuven (Belgium), including Dr. Carmen Ruiz de Almodovar, first co-author of the study with Mr. Fabre.

Research carried out in Dr. Charron's laboratory was funded by the Canadian Institutes of Health Research (CIHR) and the Fonds de recherche en santé du Québec (FRSQ). Pierre Fabre also holds scholarships from the Université de Montréal and the IRCM.

For more information, please refer to the article summary published by Neuron: http://www.cell.com/neuron/abstract/S0896-6273(11)00343-6.

About Dr. Frédéric Charron

Frédéric Charron obtained his PhD in experimental medicine from McGill University. He is an Associate IRCM Research Professor and Director of the Molecular Biology of Neural Development research unit. Dr. Charron is also associate researcher in the Department of Medicine at the Université de Montréal, and associate member of the Department of Medicine (Division of Experimental Medicine), the Department of Biology, and the Department of Anatomy and Cell Biology at McGill University. In addition, he is a member of the McGill Integrated Program in Neuroscience, the Montreal Regional Brain Tumor Research Group at the Montreal Neurological Institute, and the Centre of Excellence in Neurosciences (CENUM) at the Université de Montréal. Dr. Charron is a Research Scholar from the Fonds de recherche en santé du Québec (FRSQ).

About the Institut de recherches cliniques de Montréal (IRCM)

Founded in 1967, the IRCM (www.ircm.qc.ca) is currently comprised of 36 research units in various fields, namely immunity and viral infections, cardiovascular and metabolic diseases, cancer, neurobiology and development, systems biology and medicinal chemistry. It also houses three specialized research clinics, seven core facilities and two research platforms with state-of-the-art equipment. The IRCM employs 425 people and is an independent institution affiliated with the Université de Montréal. The IRCM clinic is associated to the Centre hospitalier de l'Université de Montréal (CHUM). The IRCM also maintains a long-standing association with McGill University.

About the Canadian Institutes of Health Research (CIHR)

CIHR (www.cihr-irsc.gc.ca) is the Government of Canada's agency for health research. CIHR's mission is to create new scientific knowledge and to enable its translation into improved health, more effective health services and products, and a strengthened Canadian health-care system. Composed of 13 Institutes, CIHR provides leadership and support to more than 13,600 health researchers and trainees across Canada.

Julie Langelier | EurekAlert!
Further information:
http://www.ircm.qc.ca

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>