Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conifer Scent Influences Climate

10.01.2014
Detection by IR: The ozonolysis of terpenes forms Criegee intermediates that oxidize SO2

Conifers emit volatile hydrocarbons, primarily terpenes, which we experience as the characteristic smell of the woods.



In a complicated series of reactions involving ozone and sulfur dioxide, these compounds may be involved in the formation of aerosols that counteract the greenhouse effect. German scientists have now been able to follow the reaction of a terpene with ozone in the laboratory by using infrared (IR) spectroscopy.

As they report in the journal Angewandte Chemie, they were able to identify critical intermediates of this process, namely the Criegee intermediates. They were also able to verify that these intermediates react very efficiently with sulfur dioxide.

Terpenes have a strong influence on the chemical processes that occur in the earth’s atmosphere, even though they are only present in trace amounts. Particularly in summer, these compounds are involved in the ozone chemistry of the troposphere. It has been shown that their oxidation plays a large role in the formation of secondary organic aerosols (SOAs), which influence our climate.

These processes have not yet been completely explained and represent a large source of uncertainty in climate-prediction models. Researchers working with Thomas Zeuch at the University of Göttingen and the Karlsruhe Institute of Technology (KIT) have now gained new insights into the reactions of terpenes with ozone.

SOAs are liquid or solid particles that contain sulfuric acid (H2SO4) and are formed from gaseous precursors such as sulfur dioxide (SO2) and terpenes. Atmospheric sulfuric acid and the sulfuric acid and sulfate aerosol particles that are formed from it also contribute to acid rain. “At the same time, they work against the greenhouse effect,” explains Zeuch, “because they both promote cloud formation and reflect the sun’s radiation back into space.”

How does sulfuric acid get into the troposphere? “In addition to a sequence of reactions that starts with the oxidation of sulfur dioxide by hydroxyl radicals, an alternative pathway of oxidation by Criegee intermediates (CIs) has been proposed,” says Zeuch. These compounds are carbonyl oxides with two free-radical centers that account for their unusual chemistry. They are formed by the reaction of ozone with the double bonds in organic compounds such as terpenes. Until now, only small CIs formed through photolysis have been directly detected. In their study, Zeuch and his co-workers have now examined the reactions of the terpene called β-pinene, which is often found in plants, with ozone.

“By using IR spectroscopy, we were able to detect large, stabilized CIs formed during the ozonolysis of pinene for the first time,” reports Zeuch. “These large CIs reacted with sulfur dioxide to form sulfur trioxide with a yield of over 80 %. Time-resolved experiments revealed that this reaction is very fast.” This unequivocally proves that SO2 is efficiently oxidized to tropospheric sulfuric acid by reaction with stabilized Criegee intermediates from terpenes.

About the Author
Dr. Thomas Zeuch is group leader and lecturer at the Institute of Physical Chemistry, Göttingen University. The research in his team is dedicated to unravel the chemistry behind the formation of new particles in air. Zeuch and his co-workers try to trace this chemistry on the microscopic level by means of new infrared spectroscopic methods.

Author: Thomas Zeuch, Universität Göttingen (Germany), http://www.uni-pc.gwdg.de/zeuch/

Title: Infrared Detection of Criegee Intermediates Formed during the Ozonolysis of β-Pinene and Their Reactivity towards Sulfur Dioxide

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201307327

Thomas Zeuch | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections

25.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>