Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conflict between plant and animal hormones in the insect gut?

15.09.2009
Specific glutathione S-transferase in caterpillars inhibits hormone OPDA in plants

A reaction similar to the inactivation of prostaglandin hormones in animals has now been discovered in the larval guts of two plant pest species. The insects bear an enzyme which structurally modifies and hereby inactivates OPDA, a highly active plant hormone.

Herbivorous caterpillars ingest relatively high amounts of OPDA with the plant foodstuff they consume. If the substance is not inactivated, it has a negative impact on the development of the insect. The results illustrate the close relationships and interactions of hormone activities in the animal and plant kingdom. Herbivorous insect species developed an enzymatic system that can inactivate highly active agents in their food when it passes their midguts. (Proc. Natl. Acad. Sci. USA, Early Edition, September 8, 2009)

Cis-OPDA (12-oxophytodienoic acid) is a highly reactive plant hormone which simultaneously serves as a precursor molecule of the metabolic "master switch" jasmonic acid. Both signal herbivory in leaves and shoots of plants and activate the plants' defense reaction against caterpillars. Cis-OPDA, when reaching the hemolymph of the caterpillar, has a negative effect on the animal, leading to premature pupation and, apparently, an impaired immune system.

Paulina Dabrowska, one of the very first PhD students of the Jena International Max Planck Research School (IMPRS) who meanwhile earned her PhD, studied the whereabouts of plant hormones after they had been consumed by the caterpillars and had passed the insect gut. Are the hormones, which are known to severely influence development and metabolism of organisms even in the slightest dose, fully metabolized in the insect gut, just converted, or not influenced at all?

Studying the plant hormone cis-OPDA it became quickly evident that a conversion of the molecule must have taken place in the insect gut. The young chemist, originally from Poland, discovered that an enzyme must play a role in the chemical reaction observed: "First, we found that cis-OPDA was not present in the insect feces anymore. Instead of cis-OPDA, our mass spectrometers suggested iso-OPDA. However, iso-OPDA is only constituted by means of enzyme catalysis." Control experiments, solely performed in strong alkaline solutions as present in the insect gut (pH approx. 10), did not cause a cis-iso conversion. The test animals were Spodoptera littoralis (cotton leaf worm) and Helicoverpa armigera (cotton bollworm) larvae; both species are major cotton pests worldwide.

When isomerizing cis-OPDA to iso-OPDA, only one double bond in the molecule is relocated, drastically changing its spatial structure: An angulate molecule with a reactive double bond (cis-OPDA) becomes a planar molecule whose double bond can only react under forced conditions. A quite similar reaction has been previously described for prostaglandins, to be exact, the transformation of active prostaglandin A1 into inactive prostaglandin B1. OPDA and prostaglandins have a similar molecule structure and biosynthesis. Isomerization of these substances can be catalyzed by specific enzymes that, for instance, use glutathione as a substrate. Therefore, Paulina Dabrowska and Dalial Freitak, another former IMPRS student, looked for corresponding genes in the genome of Helicoverpa armigera that encode such enzymes and found 16 different glutathione S-transferases (GSTs) in the insect gut. Only one of the enzymes catalyzes the cis-iso conversion of OPDA. "This clearly demonstrates that of the 16 GSTs the cotton bollworm needs for many different metabolic pathways, this specific GST represents the evolutionary adaptation to its host plants," says Prof. Wilhelm Boland, in whose Department of Bioorganic Chemistry the studies have been carried out in cooperation with the Department of Entomology of Prof. David Heckel. The host spectrum of this insect pest is not limited to cotton, but includes many other plant species as well. The ability to inactivate cis-OPDA is especially found in host generalists (caterpillars with a broad food spectrum), but hardly ever in specialist insects [WB/JWK].

Citation:
Paulina Dabrowska, Dalial Freitak, Heiko Vogel, David G. Heckel, Wilhelm Boland: The phytohormone precursor OPDA is isomerized in the insect gut by a single, specific Glutathione transferase. Proceedings of the National Academy of Sciences USA, Early Edition, published online before print September 8, 2009, doi:10.1073/pnas.0906942106
Contact:
Prof. Dr. Wilhelm Boland, MPI chemische Ökologie, Hans Knöll Str. 8, 07743 Jena, Tel.: 03641 - 57 1200, boland@ice.mpg.de
Pictures:
Angela Overmeyer M.A., Max-Planck-Institute for Chemical Ecology, Jena (Germany). Tel.: +49 3641 57-2110. overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>