Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conflict between plant and animal hormones in the insect gut?

15.09.2009
Specific glutathione S-transferase in caterpillars inhibits hormone OPDA in plants

A reaction similar to the inactivation of prostaglandin hormones in animals has now been discovered in the larval guts of two plant pest species. The insects bear an enzyme which structurally modifies and hereby inactivates OPDA, a highly active plant hormone.

Herbivorous caterpillars ingest relatively high amounts of OPDA with the plant foodstuff they consume. If the substance is not inactivated, it has a negative impact on the development of the insect. The results illustrate the close relationships and interactions of hormone activities in the animal and plant kingdom. Herbivorous insect species developed an enzymatic system that can inactivate highly active agents in their food when it passes their midguts. (Proc. Natl. Acad. Sci. USA, Early Edition, September 8, 2009)

Cis-OPDA (12-oxophytodienoic acid) is a highly reactive plant hormone which simultaneously serves as a precursor molecule of the metabolic "master switch" jasmonic acid. Both signal herbivory in leaves and shoots of plants and activate the plants' defense reaction against caterpillars. Cis-OPDA, when reaching the hemolymph of the caterpillar, has a negative effect on the animal, leading to premature pupation and, apparently, an impaired immune system.

Paulina Dabrowska, one of the very first PhD students of the Jena International Max Planck Research School (IMPRS) who meanwhile earned her PhD, studied the whereabouts of plant hormones after they had been consumed by the caterpillars and had passed the insect gut. Are the hormones, which are known to severely influence development and metabolism of organisms even in the slightest dose, fully metabolized in the insect gut, just converted, or not influenced at all?

Studying the plant hormone cis-OPDA it became quickly evident that a conversion of the molecule must have taken place in the insect gut. The young chemist, originally from Poland, discovered that an enzyme must play a role in the chemical reaction observed: "First, we found that cis-OPDA was not present in the insect feces anymore. Instead of cis-OPDA, our mass spectrometers suggested iso-OPDA. However, iso-OPDA is only constituted by means of enzyme catalysis." Control experiments, solely performed in strong alkaline solutions as present in the insect gut (pH approx. 10), did not cause a cis-iso conversion. The test animals were Spodoptera littoralis (cotton leaf worm) and Helicoverpa armigera (cotton bollworm) larvae; both species are major cotton pests worldwide.

When isomerizing cis-OPDA to iso-OPDA, only one double bond in the molecule is relocated, drastically changing its spatial structure: An angulate molecule with a reactive double bond (cis-OPDA) becomes a planar molecule whose double bond can only react under forced conditions. A quite similar reaction has been previously described for prostaglandins, to be exact, the transformation of active prostaglandin A1 into inactive prostaglandin B1. OPDA and prostaglandins have a similar molecule structure and biosynthesis. Isomerization of these substances can be catalyzed by specific enzymes that, for instance, use glutathione as a substrate. Therefore, Paulina Dabrowska and Dalial Freitak, another former IMPRS student, looked for corresponding genes in the genome of Helicoverpa armigera that encode such enzymes and found 16 different glutathione S-transferases (GSTs) in the insect gut. Only one of the enzymes catalyzes the cis-iso conversion of OPDA. "This clearly demonstrates that of the 16 GSTs the cotton bollworm needs for many different metabolic pathways, this specific GST represents the evolutionary adaptation to its host plants," says Prof. Wilhelm Boland, in whose Department of Bioorganic Chemistry the studies have been carried out in cooperation with the Department of Entomology of Prof. David Heckel. The host spectrum of this insect pest is not limited to cotton, but includes many other plant species as well. The ability to inactivate cis-OPDA is especially found in host generalists (caterpillars with a broad food spectrum), but hardly ever in specialist insects [WB/JWK].

Citation:
Paulina Dabrowska, Dalial Freitak, Heiko Vogel, David G. Heckel, Wilhelm Boland: The phytohormone precursor OPDA is isomerized in the insect gut by a single, specific Glutathione transferase. Proceedings of the National Academy of Sciences USA, Early Edition, published online before print September 8, 2009, doi:10.1073/pnas.0906942106
Contact:
Prof. Dr. Wilhelm Boland, MPI chemische Ökologie, Hans Knöll Str. 8, 07743 Jena, Tel.: 03641 - 57 1200, boland@ice.mpg.de
Pictures:
Angela Overmeyer M.A., Max-Planck-Institute for Chemical Ecology, Jena (Germany). Tel.: +49 3641 57-2110. overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>