Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Conflict between plant and animal hormones in the insect gut?

Specific glutathione S-transferase in caterpillars inhibits hormone OPDA in plants

A reaction similar to the inactivation of prostaglandin hormones in animals has now been discovered in the larval guts of two plant pest species. The insects bear an enzyme which structurally modifies and hereby inactivates OPDA, a highly active plant hormone.

Herbivorous caterpillars ingest relatively high amounts of OPDA with the plant foodstuff they consume. If the substance is not inactivated, it has a negative impact on the development of the insect. The results illustrate the close relationships and interactions of hormone activities in the animal and plant kingdom. Herbivorous insect species developed an enzymatic system that can inactivate highly active agents in their food when it passes their midguts. (Proc. Natl. Acad. Sci. USA, Early Edition, September 8, 2009)

Cis-OPDA (12-oxophytodienoic acid) is a highly reactive plant hormone which simultaneously serves as a precursor molecule of the metabolic "master switch" jasmonic acid. Both signal herbivory in leaves and shoots of plants and activate the plants' defense reaction against caterpillars. Cis-OPDA, when reaching the hemolymph of the caterpillar, has a negative effect on the animal, leading to premature pupation and, apparently, an impaired immune system.

Paulina Dabrowska, one of the very first PhD students of the Jena International Max Planck Research School (IMPRS) who meanwhile earned her PhD, studied the whereabouts of plant hormones after they had been consumed by the caterpillars and had passed the insect gut. Are the hormones, which are known to severely influence development and metabolism of organisms even in the slightest dose, fully metabolized in the insect gut, just converted, or not influenced at all?

Studying the plant hormone cis-OPDA it became quickly evident that a conversion of the molecule must have taken place in the insect gut. The young chemist, originally from Poland, discovered that an enzyme must play a role in the chemical reaction observed: "First, we found that cis-OPDA was not present in the insect feces anymore. Instead of cis-OPDA, our mass spectrometers suggested iso-OPDA. However, iso-OPDA is only constituted by means of enzyme catalysis." Control experiments, solely performed in strong alkaline solutions as present in the insect gut (pH approx. 10), did not cause a cis-iso conversion. The test animals were Spodoptera littoralis (cotton leaf worm) and Helicoverpa armigera (cotton bollworm) larvae; both species are major cotton pests worldwide.

When isomerizing cis-OPDA to iso-OPDA, only one double bond in the molecule is relocated, drastically changing its spatial structure: An angulate molecule with a reactive double bond (cis-OPDA) becomes a planar molecule whose double bond can only react under forced conditions. A quite similar reaction has been previously described for prostaglandins, to be exact, the transformation of active prostaglandin A1 into inactive prostaglandin B1. OPDA and prostaglandins have a similar molecule structure and biosynthesis. Isomerization of these substances can be catalyzed by specific enzymes that, for instance, use glutathione as a substrate. Therefore, Paulina Dabrowska and Dalial Freitak, another former IMPRS student, looked for corresponding genes in the genome of Helicoverpa armigera that encode such enzymes and found 16 different glutathione S-transferases (GSTs) in the insect gut. Only one of the enzymes catalyzes the cis-iso conversion of OPDA. "This clearly demonstrates that of the 16 GSTs the cotton bollworm needs for many different metabolic pathways, this specific GST represents the evolutionary adaptation to its host plants," says Prof. Wilhelm Boland, in whose Department of Bioorganic Chemistry the studies have been carried out in cooperation with the Department of Entomology of Prof. David Heckel. The host spectrum of this insect pest is not limited to cotton, but includes many other plant species as well. The ability to inactivate cis-OPDA is especially found in host generalists (caterpillars with a broad food spectrum), but hardly ever in specialist insects [WB/JWK].

Paulina Dabrowska, Dalial Freitak, Heiko Vogel, David G. Heckel, Wilhelm Boland: The phytohormone precursor OPDA is isomerized in the insect gut by a single, specific Glutathione transferase. Proceedings of the National Academy of Sciences USA, Early Edition, published online before print September 8, 2009, doi:10.1073/pnas.0906942106
Prof. Dr. Wilhelm Boland, MPI chemische Ökologie, Hans Knöll Str. 8, 07743 Jena, Tel.: 03641 - 57 1200,
Angela Overmeyer M.A., Max-Planck-Institute for Chemical Ecology, Jena (Germany). Tel.: +49 3641 57-2110.

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>