Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conducting Tubes

08.09.2009
Carbonized titanium dioxide nanotubes with semimetallic properties increase the efficiency of methanol fuel cells

Mention of nanotubes usually means carbon nanotubes. But not all tiny tubes are made of carbon. For example, layers made of nanoscopic titanium dioxide have proven to be useful materials for biotechnology, catalytic converters, and solar cell technology.

Although the semiconducting properties of these nanotubes are critical for many of these applications, their limited conductivity represents a hindrance for other areas of application. A team at the University of Erlangen-Nürnberg and the University of Turku in Finland has now found an easy way to breathe some metal-like conductivity into the nanotubes without changing their structure.

Through carbonization, the titanium dioxide can be converted into a carbon-containing titanium oxycarbide compound. As the researchers led by Patrik Schmuki report in the journal Angewandte Chemie, this novel material could drastically increase the efficiency of methanol fuel cells.

In order to carbonize titanium dioxide nanotubes, the researchers treated them with acetylene at 850 °C. This forms a carbon-rich compound with semimetallic properties, which is also significantly harder than before carbonization. “This is not about simply doping titanium dioxide with carbon atoms,” clarifies Schmuki. “Although the ordered tube structures remain almost completely unchanged, a new chemical compound is formed. This titanium oxycarbide can be interpreted as a solid mixture of titanium carbide and various titanium oxides.” Its high electrical conductivity and favorable electrochemical characteristics make this new material an interesting new electrode material.

Its use in methanol fuel cells seems particularly attractive. These days, methanol oxidation is usually carried out at catalytic electrodes with a carbon support and a platinum or ruthenium catalyst. “Titanium dioxide nanotubes have been under consideration as an alternative to the carbon support for a number of years,” says Schmuki. “But our new conducting oxycarbide beats these by a mile: Supports made of the oxycarbide increase the activity of the catalyst for the methanol oxidation by 700 %.”

Author: Patrik Schmuki, Carbonisierte Titandioxidnanoröhrchen mit halbmetallischen Eigenschaften steigern die Leistung von Methanol-Brennstoffzellen, http://www.lko.uni-erlangen.de/En/Frames/overview-frame.html

Title: Semimetallic TiO2 Nanotubes

Angewandte Chemie International Edition 2009, 48, No. 39, 7236–7239, doi: 10.1002/anie.200902207

Patrik Schmuki | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.lko.uni-erlangen.de/En/Frames/overview-frame.html

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>