Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conducting polymer films decorated with biomolecules for cell research use

12.05.2014

The ability to create conducting polymer films in a variety of shapes, thicknesses and surface properties rapidly and inexpensively will make growing and testing cells easier and more flexible, according to a team of Penn State bioengineers.

"The ultimate goal of this collaborative project is to be able to create a substrate for growth and manipulation of cells," said Sheereen Majd, assistant professor of bioengineering.


This illustrates conducting polymer films, grown in a patterned fashion, that are decorated with variety of biomolecules such as antibodies or proteins (represented by the flowers) to attract cells or other biomolecules (represented by the butterflies). This artistic image, created by SooHyun Park, represents the focus of this article on generating patterned films of conducting polymers with different geometries, surface chemistries, and biomolecules using the novel method of hydrogel-mediated electropolymerization towards the application in biosensing and cell/tissue engineering.

Credit: SooHyun Park, Penn State


This is an image of stamp and substrate.

Credit: Sheereen Majd, Penn State

"Cells on a surface need to recognize biomolecules like extracellular matrix proteins to be able to adhere and grow. We ultimately would like to be able to use these polymer films to manipulate adhesion, growth, proliferation and migration of cells." Majd and her team are creating patterned films of conducting polymers on gold substrates by electrodeposition through hydrogel stamps. They report their results today (May 9) in Advanced Materials.

The researchers create their hydrogel stamps from agarose -- a sugar extracted from seaweed -- poured into molds. While most of the current experiments use arrays of dots, because the researchers use molded stamps, a wide variety of shapes -- dots, squares, lines -- are possible.

The stamp is dipped in a solution of monomer and a dopant and placed on the gold surface. An electrical current through the hydrogel and gold polymerizes the monomer and dopant at the surface. If a biomolecule of interest is also included in the stamping solution, it becomes embedded in the polymer film as well.

Because the presence of dopant is important for the electrical conductivity of these polymers, only areas where monomer and dopant exist together form conductive films of polymer. The process takes from one to two minutes and the longer the current is applied, the thicker the film.

The researchers were able to produce a series of films using the same monomer but different dopants and biomolecules by altering the solution on various parts of the stamp. In this way researchers can change the surface properties and functionality of the films. The stamp can also be used multiple times before re-inking becomes necessary, simplifying and speeding up the process.

Creating arrays of different biomolecules and different shapes in conducting polymers is especially important when studying excitable cells like neurons or muscle cells because they react to electricity.

Conducting polymer arrays will allow manipulation of cells using chemical and electrical signals, expanding the ways cells can be treated. Varying films laid down on one substrate can put multiple experiments all in one place.

###

Also working on this project were SooHyun Park and Guang Yang, graduate students in bioengineering; Nrutya Madduri, visiting scholar; and Mohammad Reza Abidian, assistant professor of bioengineering.

The Charles E. Kaufman Foundation at the Pittsburgh Foundation provided partial support for this work.

A'ndrea Elyse Messer | Eurek Alert!
Further information:
http://www.psu.edu

Further reports about: Cells Foundation electricity experiments proliferation proteins signals

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>