Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conducting polymer films decorated with biomolecules for cell research use

12.05.2014

The ability to create conducting polymer films in a variety of shapes, thicknesses and surface properties rapidly and inexpensively will make growing and testing cells easier and more flexible, according to a team of Penn State bioengineers.

"The ultimate goal of this collaborative project is to be able to create a substrate for growth and manipulation of cells," said Sheereen Majd, assistant professor of bioengineering.


This illustrates conducting polymer films, grown in a patterned fashion, that are decorated with variety of biomolecules such as antibodies or proteins (represented by the flowers) to attract cells or other biomolecules (represented by the butterflies). This artistic image, created by SooHyun Park, represents the focus of this article on generating patterned films of conducting polymers with different geometries, surface chemistries, and biomolecules using the novel method of hydrogel-mediated electropolymerization towards the application in biosensing and cell/tissue engineering.

Credit: SooHyun Park, Penn State


This is an image of stamp and substrate.

Credit: Sheereen Majd, Penn State

"Cells on a surface need to recognize biomolecules like extracellular matrix proteins to be able to adhere and grow. We ultimately would like to be able to use these polymer films to manipulate adhesion, growth, proliferation and migration of cells." Majd and her team are creating patterned films of conducting polymers on gold substrates by electrodeposition through hydrogel stamps. They report their results today (May 9) in Advanced Materials.

The researchers create their hydrogel stamps from agarose -- a sugar extracted from seaweed -- poured into molds. While most of the current experiments use arrays of dots, because the researchers use molded stamps, a wide variety of shapes -- dots, squares, lines -- are possible.

The stamp is dipped in a solution of monomer and a dopant and placed on the gold surface. An electrical current through the hydrogel and gold polymerizes the monomer and dopant at the surface. If a biomolecule of interest is also included in the stamping solution, it becomes embedded in the polymer film as well.

Because the presence of dopant is important for the electrical conductivity of these polymers, only areas where monomer and dopant exist together form conductive films of polymer. The process takes from one to two minutes and the longer the current is applied, the thicker the film.

The researchers were able to produce a series of films using the same monomer but different dopants and biomolecules by altering the solution on various parts of the stamp. In this way researchers can change the surface properties and functionality of the films. The stamp can also be used multiple times before re-inking becomes necessary, simplifying and speeding up the process.

Creating arrays of different biomolecules and different shapes in conducting polymers is especially important when studying excitable cells like neurons or muscle cells because they react to electricity.

Conducting polymer arrays will allow manipulation of cells using chemical and electrical signals, expanding the ways cells can be treated. Varying films laid down on one substrate can put multiple experiments all in one place.

###

Also working on this project were SooHyun Park and Guang Yang, graduate students in bioengineering; Nrutya Madduri, visiting scholar; and Mohammad Reza Abidian, assistant professor of bioengineering.

The Charles E. Kaufman Foundation at the Pittsburgh Foundation provided partial support for this work.

A'ndrea Elyse Messer | Eurek Alert!
Further information:
http://www.psu.edu

Further reports about: Cells Foundation electricity experiments proliferation proteins signals

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>