Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conceptualizing Cancer Cells as Ancient ‘Toolkit’

09.02.2011
Despite decades of research and billions of dollars, cancer remains a major killer, with an uncanny ability to evade both the body’s defenses and medical intervention. Now an Arizona State University scientist believes he has an explanation.

“Cancer is not a random bunch of selfish rogue cells behaving badly, but a highly-efficient pre-programmed response to stress, honed by a long period of evolution,” claims professor Paul Davies, director of the BEYOND Center for Fundamental Concepts in Science at ASU and principal investigator of a major research program funded by the National Cancer Institute designed to bring insights from physical science to the problem of cancer.

In a paper published online Feb. 7 in the UK Institute of Physics journal Physical Biology, Davies and Charles Lineweaver from the Australian National University draw on their backgrounds in astrobiology to explain why cancer cells deploy so many clever tricks in such a coherent and organized way.

They say it’s because cancer revisits tried-and-tested genetic pathways going back a billion years, to the time when loose collections of cells began cooperating in the lead-up to fully developed multicellular life. Dubbed by the authors “Metazoa 1.0,” these early assemblages fell short of the full cell and organ differentiation associated with modern multicellular organisms – like humans.

But according to Davies and Lineweaver, the genes for the early, looser assemblages – Metazoa 1.0 – are still there, forming an efficient toolkit. Normally it is kept locked, suppressed by the machinery of later genes used for more sophisticated body plans. If something springs the lock, the ancient genes systematically roll out the many traits that make cancer such a resilient form of life – and such a formidable adversary.

“Tumors are a re-emergence of our inner Metazoan 1.0, a throwback to an ancient world when multicellular life was simpler,” says Davies. “In that sense, cancer is an accident waiting to happen.”

If Davies and Lineweaver are correct, then the genomes of the simplest multicellular organisms will hide clues to the way that cancer evades control by the body and develops resistance to chemotherapy. And their approach suggests that a limited number of genetic pathways are favored by cells as they become progressively genetically unstable and malignant, implying that cancer could be manageable by a finite suite of drugs in the coming era of personalized medicine.

“Our new model should give oncologists new hope because cancer is a limited and ultimately predictable atavistic adversary,” says Lineweaver. “Cancer is not going anywhere evolutionarily; it just starts up in a new patient the way it started up in the previous one.”

The authors also believe that the study of cancer can inform astrobiology. “It’s not a one-way street,” says Davies. “Cancer can give us important clues about the nature and history of life itself.”

ARIZONA STATE UNIVERSITY
BEYOND: Center for Fundamental Concepts in Science (http://beyond.asu.edu)
Center for the Convergence of Physical Science and Cancer Biology (http://cancer-insights.asu.edu)

Tempe, Arizona USA

| Newswise Science News
Further information:
http://www.asu.edu
http://cancer-insights.asu.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>