Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conceptualizing cancer cells as ancient 'toolkit'

08.02.2011
Despite decades of research and billions of dollars, cancer remains a major killer, with an uncanny ability to evade both the body's defenses and medical intervention. Now an Arizona State University scientist believes he has an explanation.

"Cancer is not a random bunch of selfish rogue cells behaving badly, but a highly-efficient pre-programmed response to stress, honed by a long period of evolution," claims professor Paul Davies, director of the BEYOND Center for Fundamental Concepts in Science at ASU and principal investigator of a major research program funded by the National Cancer Institute designed to bring insights from physical science to the problem of cancer.

In a paper published online Feb. 7 in the UK Institute of Physics journal Physical Biology, Davies and Charles Lineweaver from the Australian National University draw on their backgrounds in astrobiology to explain why cancer cells deploy so many clever tricks in such a coherent and organized way.

They say it's because cancer revisits tried-and-tested genetic pathways going back a billion years, to the time when loose collections of cells began cooperating in the lead-up to fully developed multicellular life. Dubbed by the authors "Metazoa 1.0," these early assemblages fell short of the full cell and organ differentiation associated with modern multicellular organisms – like humans.

But according to Davies and Lineweaver, the genes for the early, looser assemblages – Metazoa 1.0 – are still there, forming an efficient toolkit. Normally it is kept locked, suppressed by the machinery of later genes used for more sophisticated body plans. If something springs the lock, the ancient genes systematically roll out the many traits that make cancer such a resilient form of life – and such a formidable adversary.

"Tumors are a re-emergence of our inner Metazoan 1.0, a throwback to an ancient world when multicellular life was simpler," says Davies. "In that sense, cancer is an accident waiting to happen."

If Davies and Lineweaver are correct, then the genomes of the simplest multicellular organisms will hide clues to the way that cancer evades control by the body and develops resistance to chemotherapy. And their approach suggests that a limited number of genetic pathways are favored by cells as they become progressively genetically unstable and malignant, implying that cancer could be manageable by a finite suite of drugs in the coming era of personalized medicine.

"Our new model should give oncologists new hope because cancer is a limited and ultimately predictable atavistic adversary," says Lineweaver. "Cancer is not going anywhere evolutionarily; it just starts up in a new patient the way it started up in the previous one."

The authors also believe that the study of cancer can inform astrobiology. "It's not a one-way street," says Davies. "Cancer can give us important clues about the nature and history of life itself."

ARIZONA STATE UNIVERSITY (www.asu.edu)
BEYOND: Center for Fundamental Concepts in Science (http://beyond.asu.edu)
Center for the Convergence of Physical Science and Cancer Biology (http://cancer-insights.asu.edu)

Tempe, Arizona USA

Carol Hughes | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>