Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computers "Taught" To ID Regulating Gene Sequences

07.11.2012
Johns Hopkins researchers have succeeded in teaching computers how to identify commonalities in DNA sequences known to regulate gene activity, and to then use those commonalities to predict other regulatory regions throughout the genome. The tool is expected to help scientists better understand disease risk and cell development.

The work was reported in two recent papers in Genome Research, published online on July 3 and Sept. 27.

“Our goal is to understand how regulatory information is encrypted and to learn which sequence variations contribute to medical risks,” says Andrew McCallion, Ph.D., associate professor of molecular and comparative pathobiology in the McKusick-Nathans Institute of Genetic Medicine at Hopkins.

“We give data to a computer and ‘teach it’ to distinguish between data that has no biological value versus data that has this or that biological value. It then establishes a set of rules, which allows it to look at new sets of data and apply what it learned. We’re basically sending our computers to school.”

These state-of-the-art “machine learning” techniques were developed by Michael Beer, Ph.D., assistant professor of biomedical engineering at the Johns Hopkins School of Medicine, and by Ivan Ovcharenko, Ph.D., at the National Center for Biotechnology Information. The researchers began both studies by creating “training sets” for their computers to “learn” from. These training sets were lists of DNA sequences taken from regions of the genome, called enhancers, that are known to increase the activity of particular genes in particular cells.

For the first of their studies, McCallion’s team created a training set of enhancer sequences specific to a particular region of the brain by compiling a list of 211 published sequences that had been shown, by various studies in mice and zebrafish, to be active in the development or function of that part of the brain.

For a second study, the team generated a training set through experiments of their own. They began with a purified population of mouse melanocytes, which are the skin cells that produce the pigment melanin that gives color to skin and absorbs harmful UV rays from the sun. The researchers used a technique called ChIP-seq (pronounced “chip seek”) to collect and sequence all of the pieces of DNA that were bound in those cells by special enhancer-binding proteins, generating a list of about 2,500 presumed melanocyte enhancer sequences.

Once the researchers had these two training sets for their computers, one specific to the brain and another to melanocytes, the computers were able to distinguish the features of the training sequences from the features of all other sequences in the genome, and create rules that defined one set from the other. Applying those rules to the whole genome, the computers were able to discover thousands of probable brain or melanocyte enhancer sequences that fit the features of the training sets.

In the brain study, the computers identified 40,000 probable brain enhancer sequences; for melanocytes, 7,500. Randomly testing a subset of each batch of sequences, the scientists found that more than 85 percent of the predicted enhancer sequences enhanced gene activity in the brain or in melanocytes, as expected, verifying the predictive power of their approach.

The researchers say that, in addition to identifying specific DNA sequences that control the genetic activity of a particular organ or cell type, these studies contribute to our understanding of enhancers in general and have validated an experimental approach that can be applied to many other biological questions as well.

Authors on the brain paper include Grzegorz Burzynski, Xylena Reed, Zachary Stine, Takeshi Matsui and Andrew McCallion from The Johns Hopkins University, and Leila Taher and Ivan Ovcharenko from the National Center for Biotechnology Information.

Authors on the melanocyte paper include David Gorkin, Dongwon Lee, Xylena Reed, Christopher Fletez-Brant, Seneca Bessling, Michael Beer and Andrew McCallion from The Johns Hopkins University, and Stacie Loftus and William Pavan from the National Human Genome Research Institute.

This work was supported by grants from the National Institute of Neurological Disorders and Stroke (NS062972), the National Human Genome Research Institute’s Intramural Research Program, the National Library of Medicine, the National Institute of General Medical Sciences (GM07814, GM071648), the National Science Foundation and the Searle Scholars Program.

Catherine Kolf | Newswise Science News
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>