Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer models help decode cells that sense light without seeing

10.02.2014
BGSU’s Olivucci leverages OSC systems to study retina’s melanopsin pigment

Researchers have found that the melanopsin pigment in the eye is potentially more sensitive to light than its more famous counterpart, rhodopsin, the pigment that allows for night vision.


Superposition of computer models of human melanopsin (violet) and squid rhodopsin (green). Similar to visual pigments, melanopsin provides the interface between the physical world, responsible for light detection, and the physiological world of brain signaling. Melanopsin mediates a process termed 'photoentrainment,' which takes in light to set the clock of “circadian rhythms.” These rhythms (often termed the body clock) represent the biological implementation of the 24-hour day/night and optimize the corresponding physiology

For more than two years, the staff of the Laboratory for Computational Photochemistry and Photobiology (LCPP) at Ohio’s Bowling Green State University (BGSU), have been investigating melanopsin, a retina pigment capable of sensing light changes in the environment, informing the nervous system and synchronizing it with the day/night rhythm. Most of the study’s complex computations were carried out on powerful supercomputer clusters at the Ohio Supercomputer Center (OSC).

The research recently appeared in the Proceedings of the National Academy of Sciences USA, in an article edited by Arieh Warshel, Ph.D., of the University of Southern California. Warshel and two other chemists received the 2013 Nobel Prize in Chemistry for developing multiscale models for complex chemical systems, the same techniques that were used in conducting the BGSU study, “Comparison of the isomerization mechanisms of human melanopsin and invertebrate and vertebrate rhodopsins.”

“The retina of vertebrate eyes, including those of humans, is the most powerful light detector that we know,” explains Massimo Olivucci, Ph.D., a research professor of Chemistry and director of LCPP in the Center for Photochemical Sciences at BGSU. “In the human eye, light coming through the lens is projected onto the retina where it forms an image on a mosaic of photoreceptor cells that transmits information from the surrounding environment to the brain’s visual cortex. In extremely poor illumination conditions, such as those of a star-studded night or ocean depths, the retina is able to perceivMassimo Olivucci, Ph.D.e intensities corresponding to only a few photons, which are indivisible units of light. Such extreme sensitivity is due to specialized photoreceptor cells containing a light sensitive pigment called rhodopsin.”

For a long time, it was assumed that the human retina contained only photoreceptor cells specialized in dim-light and daylight vision, according to Olivucci. However, recent studies revealed the existence of a small number of intrinsically photosensitive nervous cells that regulate non-visual light responses. These cells contain a rhodopsin-like protein named melanopsin, which plays a role in the regulation of unconscious visual reflexes and in the synchronization of the body’s responses to the dawn/dusk cycle, known as circadian rhythms or the “body clock,” through a process known as photoentrainment.

The fact that the melanopsin density in the vertebrate retina is 10,000 times lower than that of rhodopsin density, and that, with respect to the visual photoreceptors, the melanopsin-containing cells capture a million-fold fewer photons, suggests that melanopsin may be more sensitive than rhodopsin. The comprehension of the mechanism that makes this extreme light sensitivity possible appears to be a prerequisite to the development of new technologies.

Both rhodopsin and melanopsin are proteins containing a derivative of vitamin A, which serves as an “antenna” for photon detection. When a photon is detected, the proteins are set in an activated state, through a photochemical transformation, which ultimately results in a signal being sent to the brain. Thus, at the molecular level, visual sensitivity is the result of a trade-off between two factors: light activation and thermal noise. It is currently thought that light-activation efficiency (i.e., the number of activation events relative to the total number of detected photons) may be related to its underlying speed of chemical transformation. On the other hand, the thermal noise depends on the number of activation events triggered by ambient body heat in the absence of photon detection.

“Understanding the mechanism that determines this seemingly amazing light sensitivity of melanopsin may open up new pathways in studying the evolution of light receptors in vertebrate and, in turn, the molecular basis of diseases, such as “seasonal affecting disorders,” Olivucci said. “Moreover, it provides a model for developing sub-nanoscale sensors approaching the sensitivity of a single-photon.”

For this reason, the LCPP group – working together with Francesca Fanelli, Ph.D., of Italy’s Università di Modena e Reggio Emilia – has used the methodology developed by Warshel and his colleagues to construct computer models of human melanopsin, bovine rhodopsin and squid rhodopsin. The models were constructed by BGSU research assistant Samer Gozem, Ph.D., BGSU visiting graduate student Silvia Rinaldi, who now has completed his doctorate, and visiting research assistant Federico Melaccio, Ph.D. – both visiting from Italy’s Università di Siena. The models were used to study the activation of the pigments and show that melanopsin light activation is the fastest, and its thermal activation is the slowest, which was expected for maximum light sensitivity.

The computer models of human melanopsin, and bovine and squid rhodopsins, provide further support for a theory reported by the LCPP group in the September 2012 issue of Science Magazine which explained the correlation between thermal noise and perceived color, a concept first proposed by the British neuroscientist Horace Barlow in 1957. Barlow suggested the existence of a link between the color of light perceived by the sensor and its thermal noise and established that the minimum possible thermal noise is achieved when the absorbing light has a wavelength around 470 nanometers, which corresponds to blue light.

“This wavelength and corresponding bluish color matches the wavelength that has been observed and simulated in the LCPP lab,” said Olivucci. “In fact, our calculations also indicate that a shift from blue to even shorter wavelengths (i.e. indigo and violet) will lead to an inversion of the trend and an increase of thermal noise towards the higher levels seen for a red color. Therefore, melanopsin may have been selected by biological evolution to stand exactly at the border between two opposite trends to maximize light sensitivity.”

The melanopsin research project was funded jointly by the BGSU Center for Photochemical Sciences and the College of Arts & Sciences, and, together with grants from the National Science Foundation and the Human Frontier Science Program, helped create the LCPP.

The Ohio Supercomputer Center (OSC), a member of the Ohio Technology Consortium of the Ohio Board of Regents, addresses the rising computational demands of academic and industrial research communities by providing a robust shared infrastructure and proven expertise in advanced modeling, simulation and analysis. OSC empowers scientists with the vital resources essential to make extraordinary discoveries and innovations, partners with businesses and industry to leverage computational science as a competitive force in the global knowledge economy, and leads efforts to equip the workforce with the key technology skills required to secure 21st century jobs.

Jamie Abel | EurekAlert!
Further information:
http://www.osc.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>